
DINO DISTEFANO

On model checking the dynamics

of object-based software

a foundational approach

Distefano, Dino

On model checking the dynamics of object-based software: a foundational ap-
proach / Dino Distefano - Ph.D. thesis, University of Twente, 2003
ISBN 90-365-1975-6

IPA Dissertation Series No: 2003-09
CTIT Ph.D. thesis series No: 03-58
The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics) and within
the context of the Centre for Telematics and Information Technology (CTIT).

Publisher: Twente University Press, P.O. Box 217, 7500 AE Enschede, the
Netherlands, www.tup.utwente.nl

Typeset: LATEX2ε
Print: Ocè Facility Services, Enschede

Cover design by Daniela Distefano

Copyright c© Dino Distefano, Enschede, 2003
No part of this work may be reproduced by print, photocopy or any other
means without the permission in writing from the publisher.

ISBN 90-365-1975-6
ISSN 1381-3617

ON MODEL CHECKING THE DYNAMICS

OF OBJECT-BASED SOFTWARE:

A FOUNDATIONAL APPROACH

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 7 november 2003 te 16.45 uur

door

Dino Salvo Distefano

geboren op 20 juli 1973

te Catania, Italië

Dit proefschrift is goedgekeurd door:

prof. dr. H. Brinksma (promotor)

dr. ir. J.-P. Katoen (assistent-promotor)

dr. ir. A. Rensink (assistent-promotor)

Thanks to...

Thanks to Ed Brinksma, my promotor, for giving me the possibility to start
as Ph.D. student in his FMT group four years ago. I have really enjoyed the
sparkling scientific environment which Ed has created in the group. Although
he is usually extremely busy, he has always been ready to find time to discuss
with me all kinds of issues.

Thanks to Joost-Pieter Katoen and Arend Rensink, my daily supervisors.
Working on a Ph.D. thesis is often a lonely and frustrating exercise. Mine
would not have been an exception if Arend and Joost-Pieter were not there.
As a matter of fact, the existence of this thesis is mostly due to the continuous
care that I have received from both of them during these years. I will never
forget our short meetings that always turned into long hours brainstorming at
the white-board. After each of them I was busy for weeks trying to work out
new problems. It is fair to say that almost the entirety of the results contained
in this thesis originated from those meetings. During the years, Joost-Pieter
and Arend patiently cured my unfortunate, sloppy attitude. In many difficult
occasions they helped me and — despite all the disasters I was able come up
with — they continued to believe that I could reach the end. Also, they taught
me how to translate those obscure ideas I had in my mind into science, and
how to communicate them to others. If you are one of the (un)fortunate read-
ers that will go beyond Chapter 2, and find it unreadable, try to imagine how
it was before Arend and Joost-Pieter struggled years convincing me to make
things easier. I consider myself fortunate to have had the opportunity to learn
from them.

Thanks to Mehmet Aksit, John Hatcliff, Anneke Kleppe, John-Jules Meijer,
and Mooly Sagiv for accepting the duty of being members of the promotion
commission and read the dissertation.

Thanks to Holger Hermanns and Pedro D’Argenio my “paranymphs”. Unfor-
tunately, they have not been directly involved in my research. However, I like
to think that the long trip to the completion of this thesis started once upon a
time (one night in February/March 1999) in a Mexican restaurant in Enschede.
There Pedro and Holger invited me for dinner after the formal interview with

i

ii Thanks to...

the senior members of the group. Although after some time I learned that
this is the standard hiring procedure at the FMT group, that dinner was still
special1. That famous night, helping themselves with several Coronas2, they
convinced me that FMT was the right place for my doctoral studies. True.
Fortunately, the fun shared together on the Corona-night did not turn out to
be an isolated case. On the contrary, it was only the beginning. Since that
night, they have been for me the epitome of true scientists. In this respect,
and on several occasions Holger and Pedro have influenced me and contributed
towards my development as a scientist.

Thanks to Theo Ruys who has been always ready to answer a wide range of
questions; from science, to bureaucracy, to my thesis. Even the most silly
questions. He was even able to make me feel unashamed of “mijn ABN neder-
lands”. Theo has provided me with some nice LATEX styles that have improved
the appearance of the thesis and translated the summary3.

Thanks to Joke Lammerink whose help has been useful for all those bureau-
cratic matters a computer nerd has to face in everyday life. Do you have any
idea what usually happens when twenty or so computer scientists are aban-
doned in those few weeks the secretary is on holiday leave? It is always a
catastrophe. To use the standard FMT example, consider those deadlock sit-
uations like: entire weeks spent with coffee without sugar; or sugar without
coffee; or with coffee and sugar but no coffee-filters; etc. If this is not enough
you can try to make some fancy permutations of the terms: coffee, sugar, with,
without, — and also — reisdeclaratie, werkgeversverklaring.

Thanks to Ric Klaren, my office mate, who saved me in several occasions
from my well-established inability to cope with computers, operating systems,
find dirwhereithastocomefrom | xargs ln -s, shell scripts, installations,
fancy tools, and so on.

Thanks to John Hatcliff and Matt Dwyer for having provided me with the
possibility to spend three inspiring months at Kansas State University. There,
I became aware and interested in abstraction, which broadened my view on this
research field. Thanks to Radu Iosif and Georg Jung for interesting research
discussions and for being great companions during my stay in Manhattan.

Thanks to Laura Stevens who kindly checked my English in Chapters 1 and 7
during a trip from Italy to the USA.

Thanks to Daniela Distefano for designing the cover of the book with some
tricky computer-aided manipulations of one of my drawings.

Thanks to Monica Brivio who has been like a sister (yet another) during my
Dutch sojourn. She is the first Italian I met in Enschede four years ago and
for some strange reason she has always been around to listen to my complaints

1I am pretty sure of it since I attended several such dinners later on playing the same role
as Pedro and Holger.

2Apparently, they understood immediately one of my weak points.
3If you are Dutch and your name is not Theo, you do not want to read a samenvatting in

mijn nederlands.

Thanks to... iii

in our mother tongue. As a matter of fact, when it comes to complaints, I
personally consider Italian a much more suitable language than English.

Thanks to Claudia who, although faraway, has provided constant support in
several ways, particularly in this last period. I have really appreciated it.
Thanks to the macandrians4 who made me enjoy living in this small town.
Many people still wonder why, at the time of writing these acknowledgements,
I am still living among them (actually sometimes I wonder too). However, so
far, I can hardly imagine my life in Enschede away from them. Among all,
some experienced macandrians have been the closest to me. Thanks to Azita,
Maria, Peter, Brian, Uwe, Katrin, Ruth, and Sander who have always been
macandrians at the right time.

Thanks to Antonio and Marcello who, during my trips back to my home town,
were there. Always.

Grazie ai miei genitori per la loro continua comprensione in tutti questi anni
lontani. A loro desidero dedicare questo lavoro.

4Macandrians are a rare tribe populating the suburb of Enschede. They are so rare that
even Google has some difficulties to find them in the Internet if not provided with some tricky
keywords.

Summary

This dissertation is concerned with software verification, in particular auto-
mated techniques to assess the correct functioning of object-based programs.
We focus on the dynamic aspects of these programs and consider model-checking
based verification techniques. The major obstacle to the design of model-
checking algorithms is the infinite state-space explosion caused by the dynamic
constructs supported by object-based languages. On the one hand, unbounded
allocation and deallocation (birth and death) of objects and threads give rise to
unbounded state spaces. On the other hand, the capability of objects to refer
to each other by pointers (references) yields a heap — where objects are allo-
cated — with a dynamic topological structure that evolves in an unpredictable
and intricate manner.

In order to tackle the aforementioned issues, in the first part of this thesis,
we define a temporal logic — based on linear temporal logic (LTL) — that is
aimed at specifying a wide range of properties of object-based systems. Sub-
sequently, we define and study two main subsets of the logic. The first is a
restriction to a core subset suitable to reason about allocation and deallocation
of objects. The second subset allows, in addition, reasoning about dynamic
pointers between objects. These temporal logics are interpreted on appropri-
ate (Büchi) automata-based models which provide finite-state abstractions of
infinite-state systems. These automata are employed for the definition of the
operational semantics of programming languages and constitute the basis for
our model-checking algorithms. For the case of allocation and deallocation
we achieved a sound and complete algorithm. For the more involved case of
dynamic references, we obtained a sound algorithm. However, the latter may
occasionally return false negatives.

Moreover, in this dissertation, we provide examples demonstrating how fi-
nite automata can be automatically extracted from a program. Finally, we
illustrate the usage of the developed theory and algorithms for the verification
of security properties for Mobile Ambients.

v

è una questione di qualità
o una formalità

non ricordo più bene una formalità
come decidere di radersi i capelli
di eliminare il caffè, le sigarette

di farla finita con qualcuno
o qualcosa, una formalità una formalità

o una questione di qualità

[CCCP (former Italian punk band), 1985]

vii

Contents

Thanks to... i

Summary v

1 Introduction 1
1.1 The challenges of model checking object-based software . . . 1
1.2 Contributions . 6
1.3 Outline . 7
1.4 Related work: the jungle of software model checkers 8

2 Preliminaries 11
2.1 Model checking and temporal logics 11

2.1.1 Kripke structures and Büchi automata 12
2.1.2 Linear Temporal Logic 16
2.1.3 Computation Tree Logic 17
2.1.4 A few formal notions relating formulae and models . . 19
2.1.5 The automata theoretic approach to model checking . 20
2.1.6 The tableau approach to model checking 24
2.1.7 Automata theoretic versus tableau approach 26

2.2 History-Dependent Automata 27
2.3 Object-based systems . 29

2.3.1 The Unified Modelling Language 31
2.3.2 Dynamic allocation and deallocation 32
2.3.3 Dynamic references 35

3 A logic for object-based systems 37
3.1 Introduction . 37
3.2 Syntax of BOTL . 38

3.2.1 Data types and values 38
3.2.2 Syntax of BOTL . 40

x Contents

3.3 Semantics of BOTL . 44
3.3.1 BOTL operational models 44
3.3.2 Semantics of BOTL static expressions 48
3.3.3 Semantics of BOTL temporal formulae 49

3.4 Object Constraint Language 50
3.4.1 An informal and concise summary of OCL basic concepts 51
3.4.2 OCL syntax . 53
3.4.3 Some OCL restrictions 54

3.5 Translating OCL into BOTL 56
3.5.1 Translation issues . 56
3.5.2 Translating OCL expressions into BOTL 59
3.5.3 Translating OCL constraints into BOTL 60
3.5.4 How to employ BOTL for OCL tools 62

3.6 Related work . 65
3.6.1 The Bandera Specification Language 65
3.6.2 Others . 67

4 Dynamic Allocation and Deallocations 69
4.1 Introduction . 69
4.2 Allocational temporal logic 71

4.2.1 Syntax . 71
4.2.2 Semantics . 72
4.2.3 Folded allocation sequences 74
4.2.4 Relating unfolded and folded allocation sequences . . 75

4.3 Automata for dynamic allocation and deallocation 79
4.3.1 Allocational Büchi Automata 79
4.3.2 High-level Allocational Büchi Automata 80
4.3.3 The duality between ABA and HABA 87

4.4 Programming allocation and deallocation 89
4.4.1 Syntax . 90
4.4.2 Concrete semantics 94
4.4.3 Symbolic semantics 97
4.4.4 Relating the concrete and symbolic semantics 101

4.5 Model checking A``TL . 101
4.5.1 Duplication . 102
4.5.2 Valuations . 104
4.5.3 Tableau graph for A``TL 106
4.5.4 Complexity . 120

4.6 Related work . 123

5 Dynamic References 127
5.1 Introduction . 127
5.2 A logic for navigation . 129

5.2.1 Semantics . 129
5.3 ABA and HABA with references 131

Contents xi

5.3.1 Morphisms . 132
5.3.2 Allocational Büchi Automata 136
5.3.3 Reallocations and HABA 137

5.4 Relating HABA and ABA . 147
5.5 A language for navigation . 151

5.5.1 Syntax . 151
5.5.2 Adding program variables to Na``TL 152

5.6 Operational semantics . 153
5.6.1 Preliminary terminology, assumptions and results . . 155
5.6.2 Concrete semantics 157
5.6.3 Canonical form for HABA states 161
5.6.4 Symbolic semantics 167
5.6.5 Symbolic operational rules 169
5.6.6 Relating the concrete and symbolic semantics 172

5.7 Model checking Na``TL . 174
5.7.1 Stretching HABA . 175
5.7.2 Valuations . 178
5.7.3 Tableau-graph for Na``TL 186
5.7.4 Paths . 192
5.7.5 Discussion and future work: the HABA emptiness

problem. 193
5.8 Related work . 195

6 An application: analysis of Mobile Ambients 197
6.1 Introduction . 197
6.2 An Overview of Mobile Ambients 198

6.2.1 Syntax . 198
6.2.2 Operational semantics 199

6.3 An analysis oriented semantics with HABA 200
6.3.1 Motivating examples 201
6.3.2 HABA modelling approach 202
6.3.3 Process indexing . 205
6.3.4 Preliminary notation 206
6.3.5 Pre-initial and initial state: an overview 207
6.3.6 On morphisms and canonical form for mobile ambients 209
6.3.7 Coding processes into HABA configurations 211
6.3.8 Pre-initial and initial state construction 217
6.3.9 Configuration link manipulations 218
6.3.10 A HABA semantics of mobile ambients 221

6.4 Related work . 225

7 Conclusions and Future work 229
7.1 Achievements . 229
7.2 Future work . 231

xii Contents

Bibliography 235

A Proofs of Chapter 4 245
A.1 Proofs of Section 4.2 . 245
A.2 Proofs of Section 4.3 . 246
A.3 Proofs of Section 4.4 . 250
A.4 Proofs of Section 4.5 . 254

B Proofs of Chapter 5 263
B.1 Proofs of Sections 5.3 and 5.4 263
B.2 Proofs of Section 5.5 . 267
B.3 Proofs of Section 5.7 . 282

C Proofs of Chapter 6 295

Notations 301

Index 307

Samenvatting 311

1

Introduction

1.1 The challenges of model checking object-based soft-

ware

Software verification aims to prove that a given software artifact behaves ac-
cording to the original intentions of its designer. If we exclude some classical toy
examples such as “Hello world” or some very specific and well-studied routines
reported in every introductory book to programming, such as binary search
or sorting algorithms, it is well-known that every software product has bugs
and therefore misbehaves. This statement seems to be valid regardless from
the programming paradigm used. It was true at the time when assembly lan-
guages were employed, and it is still valid nowadays where the object-oriented
paradigm is manifestly dominating the world software development scene. The
object-oriented methodology has undoubtedly contributed with remarkable im-
provements in the software development process, but unfortunately it does not
represent the ultimate solution. Also object-oriented software is buggy. This is
of course not because of a weakness of the object-oriented methodology itself,
it is simply a natural consequence of the fact that humans make mistakes.

The work carried out in this thesis lies in this rather general context: veri-
fication of object-oriented systems. Among the different methodologies studied
for software verification, we follow model checking [29], a formal technique which
has been shown very successful in other fields such as hardware verification.

The application of model checking technology consists of three major phases:
modelling, property specification, and verification. In the modelling phase, one
constructs a formal model of the system — either manually or automatically

1

2 Chapter 1 – Introduction

— containing all the relevant aspects of the software to be analysed. In the
property specification phase, one formulates the requirements that the system
must fulfil in some formalism. In the verification phase, one uses a tool, called
a model checker, to check whether indeed the system meets the desired require-
ments. The tool may detect an error, in which case a manual analysis of the
verification results must be carried out in order to single out what went wrong.

These three tasks, accomplished by the user, represent the front-end of the
complete model checking procedure. However, the design of model checking
technologies requires also a relevant effort confined to the back-end and hidden
from the final user inside the model checker. That phase consists of the design
of algorithms that represent the foundations for the implementation of the
model checker engine (underlying algorithms design phase)1.

Traditionally, model checking has been applied to mostly hardware and
communication protocols. The design and the application of model checking
for object-based software is usually more problematic than for hardware sys-
tems. This applies to each of the aforementioned phases. Let us try to quickly
illustrate the major difficulties involved.

Beyond classical model abstraction and towards model extraction.
Certainly, modelling is not an easy task. Making a formal model of a software
program can be as difficult (or even more difficult) as making the program itself.
There exists a gap between a software artifact and the reality that it tries to
implement, as well as between the software artifact and the verification model
used by the model checker. Therefore manual modelling can be as error-prone
as writing a program. Validating an erroneous model is both useless and time
consuming. Human modelling may, on the one hand, introduce errors in the
verification model that are not actually present in the software. Those would
cause false negatives. Normally they can be discovered, since they will appear
as counterexamples, and by a careful analysis it can be checked whether or not
they are real errors in the software. On the other hand, manual modelling can
hide some errors present in the program. This would produce false positives
that are rather difficult to debug [62]. Given the ever increasing complexity and
the excessive growth of the size of software, it is easy to imagine that manual
modelling for software does not scale up. Other techniques must be applied.

Like many state-of-the-art software model checkers are investigating nowa-
days, a reasonable strategy would be to automatically extract the verification
model from the source code by some process of compilation. This would have
the advantage of reducing the gap between the two artifacts (program and ver-
ification model) therefore diminishing the effort for the application of model
checking and, most importantly, eliminating the errors caused by the inconsis-
tency between the model and the program. Moreover, any change in the source

1This phase, which releases the final user from intricate technical details, has conferred
to model checking the adjective of “push-button” technology, which is most probably the
reason for its success even outside of the academic world.

1.1 The challenges of model checking object-based software 3

code would be directly reflected in the model without any need of manual up-
dating. Ultimately, this would correspond to specifying the verification model
directly by a programming language. This in turn would mean releasing the
user even from the modelling phase, which would be confined among the tasks
carried out by the designer of the model checker.

The major obstacle to the straightforward implementation of this promis-
ing strategy is an extreme degeneration of the usual fundamental problem of
model checking known as state-space explosion. For hardware systems the
manifestation of this phenomenon corresponds to the exponential combinato-
rial explosion of the number of states w.r.t. the number of modelled compo-
nents. For software the situation is even more frightening since the problem
becomes the infinite state-space explosion. This difference comes mainly from
the fact that object-based software artifacts are written in programming lan-
guages supporting dynamic constructs, such as unbounded dynamic allocation
and deallocation (birth and death) of objects and threads, unbounded recur-
sion, etc2. Aggressive abstraction must be applied at the (unfortunate) price
of having methodologies that may be not necessarily complete, i.e., possibly
providing false negatives.

Yet another typical dynamic aspect of object-based software (that also in-
duces infinite-state spaces) comes from the capability proper of objects to refer
to other allocated objects by means of references (pointers). From state to
state, references between objects are added as well as deleted and modified.
This gives to the heap (where objects are allocated) the nature of a topological
structure which, along with the time, evolves in an unpredictable and intricate
manner. It has been well known for already thirty years that pointers are an
error-prone mechanism because of the wide range of difficult to control side
effects [60]. The advent of object-based languages has alleviated the problem
derived by explicit use of pointers, but only to a limited extent: objects can
still refer to each other. Therefore, it is easy to encounter unwanted myste-
rious behaviours of the program or even the more common run-time safety
violations such as dereferencing null or disposed pointers, whose detection is
beyond the scope of type systems. These issues must be addressed at run-time
where exceptions are possible throughout the execution of the program.

A motivating example. Consider the methods listed in Table 1.1 written in
some hypothetic Java-like object-based programming language. They manipu-
late linked lists. More precisely, erase(l) deletes the object list l in a reverse
order starting from its last node. The primitive del(x) deallocates the object
x. The method append(l,x) adds the object node x to the end of the list l.
Finally, reverse(l) reverses the order of the elements in l. This last method
is a rather standard example in the literature (see for example [94, 100]).

2Other (static) forms of infinity come from the use of data structures. This is true in
general even for software that is not strictly object-based. Techniques as abstract interpre-
tation [36] have been successfully applied in this direction. We will not be concerned with
these issues in this dissertation.

4 Chapter 1 – Introduction

Assume that RequestQueue is a FIFO queue implemented by a linked list
and used in some web-server that provides services to clients over the Inter-
net. The web-server has a thread, say t1, accepting client requests. Once it
receives a request, t1 creates a new call for it which is appended to the end of
RequestQueue to be processed later on. Essentially t1 executes the following
code:

while (true) {
getRequest(client);

append(RequestQueue, new Call(client))

}

The statement new Call(client) creates a fresh object of the class Call. The
size of RequestQueue is not fixed since the number of requests is not known
in advance and can grow unboundedly, in which case the state space of this
simple example becomes infinite. Moreover, for the implementation of append
and delete in Table 1.1, there are no a priori bounds on the number of recursive
method calls. Assume also, that RequestQueue is shared by other threads of
the web-server fulfilling other tasks. The thread t2 is a special thread, invoked
in some emergency circumstances, which acts as a kind of collector resetting the
list of requests by a call to erase(RequestQueue)and freeing the corresponding
memory. Moreover, although the web-server follows a FIFO policy, in special
cases, there can be a change that causes the processing of the current requests
in the queue in reverse order. The thread t3 implements this specific policy by
calling reverse(RequestQueue).

This rather naive implementation of the system suffers from the classical
concurrency problems derived by sharing RequestQueue. Interference is pos-
sible if the executions of the methods are not done in a mutually exclusive
way, causing the resulting queue to be what t1, t2 and t3 are not actually
expecting. For example, some of the client requests may not be deallocated
after calling erase(RequestQueue), which will eventually create problems of
memory leak. Again, memory leak can occur even in the case of some simulta-
neous invocations of append (if for example the web-server has more than one
thread collecting requests) causing the loss of some requests. Another possi-
ble side-effect can be that the execution of reverse will not actually reverse
the complete queue. Hence, several properties are relevant on such a system,
like: does there exist memory leak? or may some received requests not be
enqueued? or after the invocation of reverse, is the queue actually properly
reversed? etc.

Most of the existing model checkers have been designed and applied to hard-
ware systems and communication protocols. They are therefore not tailored to
treating the dynamic aspects of object-based software in an adequate manner;
these model checkers have instead static and bounded input languages.

Dealing with the dynamics of object-based software involves both the inter-
nal representation of the model exploited by the tool (typically a kind of finite-

1.1 The challenges of model checking object-based software 5

void erase(LinkedList l) {
if (l.nxt != null) {

erase(l.nxt); del(l);

}
else return;

}

void append(LinkedList l, Call x){
if (l.nxt != null) {

append(l.nxt,x)

}
else { l.nxt=x; }

return;

}

void reverse(LinkedList l){
w=null;

while (l != nil) {
t=w;

w=l;

l=l.nxt;

w.nxt=t;

}
t=null;

return;

}

Table 1.1: Example methods that manipulate lists.

state automaton) and the algorithms acting with this model3. Consequently,
concerning the modelling phase and the design of the underling algorithms,
there is certainly the need for new appropriate techniques with the ability to
meet these challenges.

Specification. Like modelling, also the specification of properties can be
rather hard and error prone. Unfortunately, there is not too much space left
for automation. Maybe some of the relevant properties referring to the dynam-
ics of object-based software can be encoded in some tricky way in standard
first-order temporal logics. Nevertheless, we advocate defining some high-level
specification languages, with object-based flavour, which may simplify this task
by allowing more targeted (and therefore more natural) specifications.

Counter-example analysis. Finally, another difficulty in model checking
is the interpretation of the error trace given by the model checker. In the
case of software this can be very long, therefore making the counterexample
verification a tedious (and again error-prone) job. Furthermore, the existing
gap between the source code and the verification model is also present at the
moment of the interpretation of the error trace. The correspondence is not
straightforward especially if the model results from a non-trivial process of
abstraction. Techniques for mapping an error trace back to the source code
level have been developed [28, 32].

3Some existing model checkers for object-based systems rely on engines designed for static
state-spaces. Therefore, the dynamic aspects introduced above are encoded in order to fit
the limitation of the back-end engine. However, this approach seems to scale only up to a
limited extent.

6 Chapter 1 – Introduction

1.2 Contributions

This thesis provides a contribution on three sides: property specification, model
abstraction and extraction, and verification algorithms.

On the specification side, we define a temporal logic that is aimed at spec-
ifying properties of object-based systems. The logic is called BOTL (Object-
Based Temporal Logic), and its object-based ingredients are largely inspired
by the Object Constraint Language (OCL) [110], a part of the UML [98] which
is nowadays considered the standard for modelling object-oriented systems.
BOTL is equipped with a well-defined formal semantics. In this thesis, a trans-
lation from OCL into BOTL is defined, thus providing a formal semantics of
a significant subset of OCL. This sets the foundation for the development of
model checking tools that use OCL as specification language. Moreover, this
approach addresses a few ambiguities in OCL that have been reported in the
literature [53].

We define and study two main subsets of BOTL. The first, called A` ò-
cational Temporal Logic (A``TL), restricts BOTL to a core subset that is
amenable to capture — as primitive notions — two fundamental concepts in
object-based systems: the birth and death of objects. The second subset, called
Na``TL, possesses primitives addressing dynamic references (pointers) between
objects. With some abuse of mathematical notation we can express the relation
between BOTL, A``TL, and Na``TL as follows:

A``TL ⊂ Na``TL ⊂ BOTL.

Hence, Na``TL is both a subset of BOTL as well as an extension of A``TL.
Concerning modelling and (model) abstraction, this thesis contributes with

the definition of two formalisms. The first one is represented by a special
kind of automata, so-called High-level Allocational Büchi Automata (HABA).
They can be used for the interpretation of A``TL as well as for finite-state
abstractions of certain kinds of infinite-state systems. Their main feature is
their potential to model systems where allocation and deallocation of entities
take place in a compact way. The second formalism is an enhancement of
HABA aimed at modelling systems concerned with— besides allocation and
deallocation — the representation of dynamic pointer structures. In order to
provide finite models of such systems, HABA with references exploit dedicated
kinds of abstractions.

Going from model abstraction towards model extraction, both HABA with
and without references are used to define the operational semantics of small
programming languages demonstrating, therefore, how finite models can be
automatically extracted from a program. This is exemplified by the definition
of a small programming language whose main features are the allocation and
deallocation of entities (of which there can be unboundedly many), as well as
a simplified form of navigation.

To illustrate the expressivity of our operational model (with references),
and its accompanying logic, we show as an application example, their use for

1.3 Outline 7

the verification of security properties in the context of Mobile Ambients [19].
The latter is a popular formalism meant to model wide-area and mobile compu-
tations. We propose an analysis of mobile ambients exploiting the abstraction
capabilities of our operational model to define suitable representations of (am-
bient) processes. Additionally, we show how Na``TL can be used to express
security properties of such processes. The Na``TL model checking algorithm
(see below) can then be applied in order to check if the properties are not
satisfied by the processes.

The main contribution of the thesis is, however, on the verification side.
More precisely on the definition of algorithms for model checking. First, we
show that the model-checking problem for A``TL is decidable on HABA (with-
out references). This is done by the definition of a tableau-based model checking
algorithm which, given an A``TL-formula and a HABA, automatically decides
whether or not the formula is satisfied in the model. Secondly, for the more
complex case of Na``TL, we define an adapted model checking algorithm that
verifies whether a Na``TL formula is not satisfiable in a given HABA with
references. The algorithm is semi-decidable and may return false negatives.

1.3 Outline

This dissertation comprises the following parts.

Chapter 2 provides the theoretical background needed for the formal ma-
chinery developed in the rest of the thesis. From the formal side, it gives
an introduction to model-checking [29] and temporal logics [26, 91]. A
short overview on a formalism called History-Dependent automata [83]
concludes the formal background. The rest of the chapter is devoted to
the introduction of those notions related to object-based systems that are
mostly addressed in the successive chapters.

Chapter 3 presents the temporal logic BOTL and defines the translation from
OCL into BOTL that provides a formal semantics to a subset of OCL.

A preliminary version of this chapter has been published in [42].

Chapter 4 studies the notions of birth and death by restricting BOTL to
A``TL. The first version of HABA (without references) is introduced.
A small programming language for the allocation and deallocation of
objects is defined and its semantics in terms of HABA is given. Finally,
the model-checking problem for A``TL is shown to be decidable.

An extended abstract of this chapter has been published in [45].

Chapter 5 studies the extension of A``TL to dynamic references. Na``TL is
defined and HABAs are enhanced with dynamic pointer structures. An-
other simple programming language with a simplified form of navigation
is introduced. Its semantics is given in terms of HABA with references.

8 Chapter 1 – Introduction

Finally, the chapter defines a (semi-decidable) model-checking algorithm
that verifies whether aNa``TL formula is not satisfiable in a given HABA.

Chapter 6 describes an application of the theories developed in previous chap-
ters to another domain. It illustrates how the developed operational
model (with references) can be used to model the dynamic behaviour
of Mobile Ambients and how the logic Na``TL can be used to specify
security properties.

Chapter 7 contains a summary of the main results and proposes some direc-
tions for further research.

Appendixes contain the proofs of the results given in Chapters 4, 5, and 6.

1.4 Related work: the jungle of software model checkers

The challenges discussed in Section 1.1 have been taken up by the scientific
community, and lately, the substantial increase of interest in software model-
checking has resulted in several different approaches, methodologies and tools.
In this section, we try to give an overview of the major approaches (in particular
those involving object-based/oriented systems) of which we are aware.

Each individual chapter contains a more detailed discussion of the related
work.

Bandera tool set. Bandera [32], developed at Kansas State University, is
a model checker for Java source code. The philosophy followed by Bandera is
reusing existing verification tools. Hence, Bandera allows for the automatic ex-
traction of a verification model analysable by a model checker, e.g., SPIN [61],
dSPIN [41] or SMV [80] directly for a Java program. An interesting feature
is that the output of the verification tool is mapped back to the level of the
source code (like a debugging tool). This makes it possible to interpret coun-
terexamples directly on the code. The extraction of the model from the source
code employs sophisticated techniques for abstraction such as slicing (i.e., the
removal of variables and data structures not related to the property to be
proved) and data abstraction (by abstract interpretation). The combination of
these techniques results in rather compact state spaces. For the specification
of properties, Bandera supports a high-level specification language based on
temporal patterns (see Section 3.6.1).

Java PathFinder. Another model checker for Java is Java PathFinder (JPF)
[58], developed at NASA Ames research centre. JPF relies on a special Java
virtual machine that is invoked by the model checking engine to interpret byte-
code generated by the Java compiler. The analysis is done at the byte code
level, thus permitting the verification of third party software where the source
code is not available. Moreover, any language translated into byte-code can

1.4 Related work: the jungle of software model checkers 9

be analysed. In order to reduce the state space, JPF exploits a combination
of techniques (á la Bandera) such as: abstraction, static analysis, slicing, and
runtime analysis. JPF uses LTL (or CTL) as a property specification language,
and it has been employed in several case studies.

Slam project. The purpose of the Slam project [5] — currently being car-
ried out at Microsoft Research — is to check temporal safety properties of C
programs. Properties are encoded in a language called SLIC (Specification
Language for Interface Checking) and are mostly oriented to describe the exe-
cution behaviour of the program at the level of function calls and returns.

Given a program P and a specification S, a preprocessing phase creates a
new program P ′ that reaches an error state if and only if the original program
P does not conform to the specification S. The analysis itself is done on a
sound abstraction of P ′ in terms of so-called boolean programs that are auto-
matically generated using predicate abstraction [54]. Boolean programs have
control-flow constructs typical of C, but only admit boolean variables. The
applied abstraction is sound but not complete. Thus false counterexamples
may be generated. Therefore, for every detected error state a careful process
of counterexample analysis must carried out. The corresponding SLAM toolkit
has been used to validate the behaviour of some Windows XP device drivers.

FeaVer. FeaVer [63], developed at Bell Labs, is a tool that can automatically
extract Promela4 models from C programs. As for every other software ver-
ification tool, for the generation of the model out of the source code, FeaVer
makes use of abstraction techniques such as slicing. The resulting models can
then be verified by the model checker SPIN. FeaVer has been applied success-
fully in an industrial case study at Lucent Technologies. The objective of this
case study was the design of the call processing software for a new telephone
switching system.

3-valued logic A model checker, called 3VMC, for concurrent Java programs
aimed at the verification of safety properties was introduced in [112]. The main
applications concern: detection of interference between threads accessing the
same shared object; deadlock detection in concurrent programs; verification
that shared linked lists preserve some properties under concurrent manipula-
tion. The tool is able to handle an unbounded number of threads and objects,
and it is based on the 3-valued logic engine of TVLA [74]. The latter is a sys-
tem that, given the operational semantics of a program expressed in 3-valued
logic, automatically generates an abstract interpretation analysis algorithm.
The model checker 3VMC is sound but not complete since it may give spare
counterexamples.

4Promela is the input language of the SPIN model checker [61].

10 Chapter 1 – Introduction

BLAST. The tool BLAST (Berkeley Lazy Abstraction Software verification
Tool) [59] verifies properties of C programs starting from a coarse predicate
abstraction of the source code. The abstraction is automatically refined on-the-
fly until a bug in the program is detected or the correctness of the specification
is proved. Large C programs have been verified using BLAST, in particular
several Windows and Linux device drivers.

2

Preliminaries

This thesis is driven by two rather unrelated worlds: formal verification and
object-based systems. The present chapter is meant to set up the theoreti-
cal background framework needed for the formal machinery developed in later
chapters. We will start our overview with an introduction on the formal verifi-
cation technique called model-checking [29] that we have chosen to exploit and
the related specification languages, i.e., temporal logics. Moreover, we give a
quick introduction to History-Dependent automata, a formalism that has been
the source of inspiration for a number of ideas in this thesis. We will continue
our description by introducing some notion related to object-based systems
focusing on those particular concepts and problems we will try to tackle later
on.

2.1 Model checking and temporal logics

Model checking is a formal technique used for the verification of hardware and
software systems represented by finite models (e.g., automata) that in turn are
suitable abstractions of real systems. The model checking slogan is not at all
sophisticated but, in fact rather simple, and can be stated in two words: brute
force. The idea is to explore exhaustively all the possible states of the system
in order to verify whether a property may be satisfied or not. The strength
of model checking is that the exhaustive search is done mechanically by a tool
called the model checker. Nowadays, state of the art model checkers can handle
rather large state spaces: up to 108 − 109 states. In special cases suitable to
optimisations, in the literature have been reported experience of systems with

11

12 Chapter 2 – Preliminaries

1030 [27] and even 10476 [105] states. The latter is a number far beyond the
estimated amount of atoms in the universe.

Although model checking has been used in the past especially for the verifi-
cation of hardware systems and/or designs as well as for protocol verification,
the interest of the research community is lately devoted also to model checking
techniques for software systems. In this thesis, we restrict ourselves to this last
case.

The tasks involved in the application of model checking can be summarised
as follows:

• Modelling. From the software system and/or design, a model expressed
in a formalism accepted by a model checker must be defined. The def-
inition can be done either manually or automatically by extracting the
model from the software itself, e.g., by some kind of compiler (cf. Sec-
tion 1.1). It is in any case necessary that the model presents all the
relevant aspects to be analysed.

• Properties specification. Since model checking allows to formally ver-
ify that a system (or a design) fulfils given properties, we need a language
to express them. Normally, the language used for the specification of re-
quirements is a temporal logic.

• Verification. This phase is done by the model checker. The human
activity is confined to the analysis of the verification results, e.g., coun-
terexamples. For software verification the counterexample may be very
lengthy making therefore the human interpretation a rather hard task
(cf. Section 1.1).

Because of the verification phase, model checking has been several time ad-
dressed in the literature as a push-button technology. However, applying model
checking as a whole to non-trivial systems may require considerable human
effort and skills especially during the first two phases (modelling and property
specification). Sound abstractions must be designed in order to have mean-
ingful verification results. General abstractions, suitable for a wide range of
problems are difficult to define.

This section is based on [29, 71, 79] and it is organised as follows. Sec-
tion 2.1.1 introduces two mathematical models used in model checking, namely
Kripke structures and Büchi automata. Sections 2.1.2 and 2.1.3 present two
very well studied temporal logics, i.e., LTL and CTL. Section 2.1.4 gives the
formal definition of model-checking, satisfiability and other related notions.
Then Sections 2.1.5 and 2.1.6 introduce two different approaches to model
checking. Finally Section 2.1.7 compares the two methods.

2.1.1 Kripke structures and Büchi automata

Kripke structure [72] and Büchi automata [16] are mathematical models used
extensively for the definition of the semantics of temporal logics.

2.1 Model checking and temporal logics 13

s3

{p, q}

s1 s2

{p}

Figure 2.1: Example of Kripke structure.

Throughout this section, let AP be a finite set of atomic propositions ranged
over by p, p′, p1, r, etc. As for propositional logic, atomic propositions are the
most basic statements expressible in temporal logic.

Definition 2.1.1 (Kripke structure). A Kripke structure is a tuple K =
〈S, I,−→, L〉 where:

• S is a countable set of states;

• I ⊆ S is a set of initial states;

• −→ ⊆ (S×S) is a transition relation satisfying ∀s ∈ S.(∃s′ ∈ S.(s, s′) ∈ −→)

• L : S → 2AP is an interpretation function on the set of state S, i.e., a
function that assigns a set of atomic propositions to each state.

In the following, we write s −→ s′ as a shorthand for (s, s′) ∈ −→. The transition
relation is total because of the condition imposed in the definition.

Definition 2.1.2 (Path). Let K = 〈S, I,−→, L〉 be a Kripke structure. A path
in K is an infinite sequence of states s0s1s2 · · · such that si −→ si+1 for all i > 0.

As a convention for a path η = s0s1s2 · · · we write η[i] to denote the
(i + 1)-th element and ηi for the suffix of η starting at state i + 1, that is
ηi = sisi+1si+2 · · · . The set of paths starting at state s is defined by

PathK(s) = {η ∈ Sω | η[0] = s, ∀i > 0: η[i] −→ η[i+ 1]} .

As a consequence of the condition imposed upon the transition relation of a
Kripke structure K, we have PathK(s) 6= ∅ for any state s.

Example 2.1.3. An example of Kripke structure is depicted in Figure 2.1.
We have:

S = {s1, s2, s3}

I = {s1}

−→ = {(s1, s2), (s2, s1), (s1, s3), (s2, s2), (s3, s2), (s3, s1)}

L = {(s1,∅), (s2, {p, q}), (s3, {p})}.

14 Chapter 2 – Preliminaries

Definition 2.1.4 (Labelled Finite State Automaton). A labelled finite-
state automaton (LFSA), over finite words, is a tuple A = 〈Σ, S,−→, I, F, L〉
where

• Σ is a finite alphabet;

• S is a finite set of states;

• −→⊆ S × S is a transition relation;

• I ⊆ S is a set of initial states;

• F ⊆ S is a set of accept states;

• L : S → Σ is a function labelling the states.

An equivalent and more widespread definition usually given, e.g., in com-
piler theory, labels transitions instead of states. Following [51, 71], here we
prefer this definition since it suits better with the theory developed later on.

As usual, for a finite alphabet Σ, let Σ∗ represent the set of all finite words
and Σω the set of all infinite words, both over Σ.

Definition 2.1.5. For a LFSA A = 〈Σ, S,−→, I, F, L〉,

• a run ρ is a finite sequence of states ρ = s0s1 · · · sn such that s0 ∈ I and
si −→ si+1 for 0 6 i < n. ρ is called accepting if sn ∈ F .

• w = a0a1 · · · an ∈ Σ∗ is an accepted word if there exists an accepting run
ρ = s0s1 · · · sn such that L(si) = ai for all 0 6 i 6 n.

• the language accepted is the set L(A) = {w ∈ Σ∗ | w is accepted by A}.

LFSAs are often used to model the behaviour of terminating programs.
Since, concurrent systems not always are supposed to terminate, their be-
haviour is modelled by finite automata accepting infinite words, called Büchi
automata [16]. Büchi automata are defined as LFSA except for the definition
of runs, which must be infinite.

Definition 2.1.6. For a Büchi automaton B = 〈Σ, S,−→, I, F, L〉,

• a run ρ is an infinite sequence of states ρ = s0s1s2 · · · such that s0 ∈ I
and si −→ si+1 for i > 0. Let Inf (ρ) be the set of states occurring infinitely
often in ρ. Then ρ is called accepting if Inf (ρ) ∩ F 6= ∅.

• w = a0a1a2 · · · ∈ Σω is an accepted word if there exists an accepting run
ρ = s0s1s2 · · · such that L(si) = ai for all i > 0.

• the language accepted is the set L(B) = {w ∈ Σω | w is accepted by B}.

From this definition it follows that a run ρ is accepting if some accepting state
occurs infinitely often.

2.1 Model checking and temporal logics 15

There exist several kinds of Büchi automata that are obtained by changing
the notion of acceptance. An important one that we will use in the following, is
the notion of generalised Büchi automaton . In particular, a generalised Büchi
automaton has a set of sets of accept states of the form F ⊆ 2S (where S is the
set of states). If F = {F0, . . . , Fn}, a run of a generalised Büchi automaton is
accepting if

Inf (ρ) ∩ Fi 6= ∅ ∀0 6 i 6 n (2.1)

that is, for each set of accept states Fi, there is some state occurring infinitely
often in ρ. It is interesting to note that the generalised acceptance condition
does not extend the set of languages accepted by Büchi automata.

Kripke structures versus Büchi automata. The two formal notion of
Kripke structure and Büchi automaton are closely related. In particular, a
Kripke structure directly corresponds to a Büchi automaton where all states
are accepting and the alphabet is the power set of the atomic proposition.
That is: let K = 〈S, I,−→, L〉, then the corresponding Büchi automaton is B =
〈2AP , S,−→, I, S, L〉. Vice-versa, a Büchi automaton, can be seen as a Kripke
structure with a fairness condition determined by the set of accept states. In
particular, a generalised Büchi automaton is sometimes called in the literature
fair Kripke structure [29]. Hence, every notion introduced in this chapter for
Kripke structures can be restated in terms of Büchi automata1

More on Büchi automata. We now introduce some results on Büchi au-
tomata that will be useful in Section 2.1.5. Given a Büchi automaton B, there
exists an automaton B such that

L(B) = Σω\L(B) (2.2)

i.e., Büchi automata are closed under negation. For the rather involved con-
struction of B, the reader is referred to [103]. Büchi automata are also closed
under intersection, that is given B1 and B2 there exists the automaton B1 ∩B2

such that
L(B1 ∩ B2) = L(B1) ∩ L(B2). (2.3)

The construction of the intersection (or product) automaton is a modification
of the definition of synchronous product of LFSA. The difficulty is given by the
Büchi acceptance condition that must be satisfied. B1 ∩B2 can be constructed
as follows. Let B1 = 〈Σ, S1,−→1, I1, F1, L1〉 and B2 = 〈Σ, S2,−→2, I2, F2, L2〉 then
B1 ∩ B2 = 〈Σ, S,−→, I, F, L〉 where:

• S = {(s, s′) ∈ S1 × S2 | L1(s1) = L2(s2)} × {1, 2}

• I = (I1 × I2)× {1}) ∩ S

1Being this chapter a overview on well established theories, when there will be the choice
between Kripke structures and Büchi automata we will try to follows what in the literature
is more widespread.

16 Chapter 2 – Preliminaries

• if s1 −→1 s
′
1 and s2 −→2 s

′
2 then

(i) if s1 ∈ F1 then (s1, s2, 1) −→ (s′1, s
′
2, 2)

(ii) if s2 ∈ F2 then (s1, s2, 2) −→ (s′1, s
′
2, 1)

(iii) otherwise (s1, s2, i) −→ (s′1, s
′
2, i) for i = 1, 2

• F = (F1 × S2)× {1}) ∩ S

• L(s, s′, i) = L1(s).

This construction was proposed in [23]. The automaton B1 ∩ B2 makes transi-
tions when B1 and B2 perform steps on the same label. B1∩B2 can be thought
as having two tapes: states with third component 1 form the first tape whereas
those with third component 2 form the second tape. The transition relation
ensures that in order to visit infinitely many times the accept states in F , the
accept states of both B1 and B2 must be visited infinitely many times as well.
For the definition of F , it is enough to consider states in the tape 1 since by
the transition relation the B1 ∩ B2 switches tape when visiting a state in F .
Therefore, in order to visit a state in F again, the automaton must switch from
tape 2 to tape 1. But, because of the definition of the transition relation this
can happen only if the control of the automaton passes through an accept state
of B2. Thus, a run of B1 ∩B2 traverses infinitely many times F precisely when
both B1 and B2 traverse infinitely many times their set of accept states F1 and
F2. Note that setting F = F1 × F2 would not work since it requires not only
that B1 and B2 visit accept states both infinitely often, but also that they do
it at the same time ruling out, hence, some good runs.

2.1.2 Linear Temporal Logic

In general there exists two main branches of temporal logics and their classifi-
cation is based on the way time is modelled: linear time or branching time. For
the interpretation of a formula, in the linear case every state may only have
one successor state. On the contrary, in the branching case every state may
have more than one.

The main representative of the first kind is Linear Temporal Logic (LTL)
introduced by Pnueli in 1977 [91].

Syntax of LTL. Let p ∈ AP be an atomic proposition. The syntax of Linear
Temporal Logic is given by:

φ ::= p | ¬φ | φ ∨ φ | Xφ | φUφ.

Intuitively, the meaning of the formulae is as follows: in a state ¬φ holds if φ
does not hold; φ1 ∨ φ2 holds if either φ1 holds or φ2 holds; Xφ holds in a state
if φ holds in the successive state. X is called next operator and represents the
first temporal operator we encounter. Finally, φ1 Uφ2 holds if φ2 eventually will

2.1 Model checking and temporal logics 17

hold for some state and — until that state — φ1 continuously holds. U is called
until operator. From this basic syntactic definition of LTL, it is customary to
define other connectives as syntactic sugar:

tt ≡ p ∨ ¬p
ff ≡ ¬tt
φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)
φ⇒ ψ ≡ ¬φ ∨ ψ
φ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ φ)
Fφ ≡ ttUφ [eventually φ]
Gφ ≡ ¬F(¬φ) [globally φ]

Most of these abbreviations are standard in propositional logic, the last two
are typical of LTL. Intuitively, Fφ means that either φ is true now or it will
become true in some state in the future. Gφ means that φ holds in the current
state and it holds in every state in the future.

Semantics of LTL. The term linear in LTL derives from the fact that for-
mulae are interpreted over sequences of states representing computation of a
system modelled by a Kripke structure K = 〈S, I,−→, L〉. These sequences are
paths of K.

Let p ∈ AP be an atomic proposition, η a path and φ, ψ be LTL formulae.
The satisfaction relation |= is given by:

η |= p iff p ∈ L(η[0])

η |= ¬φ iff not (η |= φ)

η |= φ ∨ ψ iff either (η |= φ) or (η |= ψ)

η |= Xφ iff η1 |= φ

η |= φUψ iff ∃j > 0: ηj |= ψ ∧ (∀0 6 k < j : ηk |= φ))

As for propositional logic, an atomic proposition p is true in a state η[0] if it
is among the interpretations given by L(η[0]). A negated formula ¬φ is valid
in a state if φ is not valid in the same state. The disjunction φ ∨ ψ is valid
when at least one of φ, or ψ is valid in the same state. The next operator
is more interesting since it is proper of temporal logics. Xφ is satisfied by a
path η if the formula φ is valid in the path starting from the successor state of
η[0]. Finally, the until formula φUψ is satisfied if ψ become valid on a path
starting at η[0] or starting from a state following η[0], say η[j] with j > 0 .
Furthermore, it is required that in every path starting with a state between
η[0] and the predecessor of η[j], the formula φ is continuously valid.

2.1.3 Computation Tree Logic

For the sake of completeness, we give some notions of branching temporal logic.
Although in the remaining of the thesis we will focus on linear temporal logics,

18 Chapter 2 – Preliminaries

the present overview may help the reader to realise that several of the definition
introduced in the following chapters in a linear setting can be restated, and
therefore applied, in a branching temporal logic.

Computation Tree Logic (CTL), introduced by Clarke and Emerson in
1981 [26], is a temporal logic that has a branching notion of time (in contrast
with LTL), i.e, for every state there can be more that one possible successor
state. The underlying notion of semantics of a branching temporal logic is a
tree of states rather than a sequence. Like a sequence, a tree is obtained from a
Kripke structure by a process of “unfolding”. The outgoing transitions starting
from a state represent the possible next states, and CTL allows to reason about
all or some of the paths by a special quantifier over paths.

Syntax of CTL. As usual let AP be a set of atomic propositions ranged
over by p, q, r. The syntax of CTL is defined by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | EXφ | E[φUφ] | A[φU φ].

The temporal operators have the following intuitive meaning:

• EXφ expresses that there is a next state in which the formula φ holds.

• E[φUψ] expresses that there exists a path starting from the current state
along which ψ holds at a given state, and φ holds in every state before.

• A[φUψ] expresses that along every path starting from the current state,
ψ holds at a given state and φ holds in every state before.

As usual, by combining these basic operators we can obtain other auxiliary
operators. The first two correspond to the case where the first formula is tt.
We have:

EFφ ≡ E[tt Uφ] [potentially φ]
AFφ ≡ A[tt Uφ] [φ is inevitable].

Finally, by negation we can define the (very useful) duals of the previous op-
erators:

AXφ ≡ ¬EX¬φ [for all path next φ]
AGφ ≡ ¬EF¬φ [invariantly φ]
EGφ ≡ ¬AF¬φ [potentially always φ].

Given a state s the previous connectives have the following intuitive meaning.
EFφ is valid in s if and only if eventually φ holds along at least one of the
paths starting at s, whereas AFφ is valid in s if and only if φ holds in all paths
starting at s. The formula EGφ holds in s if there exists some path starting at
s where φ holds along every state of this path. Symmetrically, AGφ holds in s
if and only if φ holds in every state of every path starting at s.

2.1 Model checking and temporal logics 19

Semantics of CTL. Also the semantics of CTL is based on the notion of
Kripke structure. Given a Kripke structure K = 〈S, I,−→, L〉 and state s ∈ S,
there exists a infinite computation tree rooted at s such that (s′, s′′) is an arc
of the tree if and only if s′ −→ s′′ and s′ is reachable from s.

The semantics of CTL is defined by satisfaction relation |= between the
Kripke structure K, a state s and a formula φ. We write K, s |= φ if and only
if φ holds in the state s of K. The structure K is usually omitted if it is clear
from the context.

Let p ∈ AP be an atomic proposition, K = 〈S, I,−→, L〉 be a Kripke struc-
ture, s ∈ S, and φ a CTL formula. The satisfaction relation |= is defined
by:

s |= p iff p ∈ L(s)

s |= ¬φ iff not (s |= φ)

s |= φ ∨ ψ iff either (s |= φ) or (s |= ψ)

s |= EXφ iff ∃η ∈ PathK(s) : η[1] |= φ

s |= E[φUψ] iff ∃η ∈ PathK(s) : (∃j>0: η[j] |=ψ ∧ (∀06k<j : η[k] |=φ))

s |= A[φUψ] iff ∀η ∈ PathK(s) : (∃j>0: η[j] |=ψ ∧ (∀06k<j : η[k] |=φ)).

The interpretation of atomic propositions, negation, disjunction is the same
as for LTL. EXφ is true if there exists a path among those starting at s that
satisfies φ in the next state. The interpretation of A[φUψ] and E[φUψ] is the
same as φUψ in LTL, except that there is the existential and the universal
quantification on the paths starting at s. Namely, we require that the until
formula holds for at least one path in E[φUψ] and for every path in A[φUψ].

2.1.4 A few formal notions relating formulae and models

Given a Kripke structureKmodelling the behaviour of a system and a formula φ
expressed in some temporal logic, e.g., LTL or CTL, representing a specification
of the system, we have several notions relating K and φ. We give the definition
for the case of LTL.

Definition 2.1.7. Let K = 〈S,−→, I, L〉 be a Kripke structure and φ a LTL
formula:

K |= φ iff ∀s ∈ I : (∀η ∈ PathK(s) : η |= φ)

When K |= φ we say that K satisfies φ.

The notion of satisfiability given by Definition 2.1.7 corresponds to the infor-
mal idea that an implementation satisfies a specification, that is: if no possible
computation of the system does violates the specification given by φ. Defini-
tion 2.1.7 takes origin in logic from the well-known satisfiability problem (SAT)
defined in Table 2.1. For propositional LTL, (SAT) is decidable, but for other
logics it is not (e.g., first-order logic). Indeed this is a rather hard problem since
only φ is given whereas K must be somehow determined and/or constructed.

20 Chapter 2 – Preliminaries

Dual to the satisfiability problem is the validity problem (VAL) again defined in
Table 2.1. To decide (VAL) for φ, one can solve the the satisfiability problem
for ¬φ since if a formula is valid then its negation is unsatisfiable.

The third problem defined in Table 2.1 is the model checking problem (MC).
In that case, the Kripke structure K is given and we must “only” verify that it
satisfies φ. The model checking problem conforms more to the idea of software
verification, since it essentially tries to verify whether a model of an imple-
mentation (i.e., K) satisfies a specification (i.e., φ). In contrast, an algorithm
showing (SAT) can be used as a feasibility test for a specification φ: in fact,
if φ does not pass the test it cannot be implemented at all, therefore another
specification must be provided.

In this thesis, we deal with issues related to (MC). Hence, every time, we
consider the case where K is given. We can see K in two different ways [99]:

• as a post-design or pre-implementation model; in this case K is used
to verify the design of a system and it can help to define a candidate
implementation that is supposed to satisfy the specification φ. This point
of view corresponds to the “classical” model checking approach.

• as post-implementation model; in this case K is used as a verification
model of an existing implementation and the aim is the debugging of the
implementation. This point of view corresponds to the “modern” model
checking approach (cf. Section 1.1 for related issues).

Along the lines of the two previous points of view, we refine the notion of
satisfiability and validity given above in order to be more related to the idea
of computations performed by K. In fact, because of the two universal quan-
tifications, Definition 2.1.7 has more the flavour of validity in terms of the
computations performed by K. The last two problems defined in Table 2.1 are
parametric (dependent) on K. The K-validity problem (K-VAL) corresponds
to (MC), although the quantification (and therefore the emphasis) is on the
computation rather than on the model K. The dual problem of (K-VAL), is
the K-satisfiability problem (K-SAT). (K-SAT) asks if there exists (at least) one
computation in K satisfying φ whereas (K-VAL) asks if every computation of K
satisfies φ. Again the difference between (SAT), (VAL), (K-SAT) and (K-VAL) is
that the quantification in the former two is on the Kripke structure K whereas
in the latter two the quantification is over the computations of a given K.

Note that solving (K-VAL) corresponds to solving (MC) and by solving (K-
SAT) for ¬φ we automatically determine an answer for (K-VAL).

Moreover, the corresponding notions of (K-VAL) and (K-SAT) for Büchi
automata will be introduced in Chapters 4 and 5 for the special case of HABAs
which are the automata we are going to define and use there.

2.1.5 The automata theoretic approach to model checking

Automata, and in particular Büchi automata, can be used not only to describe
the behaviour of concurrent systems but also to formalise the specifications of

2.1 Model checking and temporal logics 21

(SAT) given a formula φ, does there exist a Kripke structure K
such that K |= φ?

(VAL) given a formula φ, is it K |= φ for every Kripke structure K?

(MC) given a formula φ and a Kripke structure K, is it K |= φ?

(K-VAL) given a formula φ, is it ∀s ∈ I : (∀η ∈ PathK(s) : η |= φ)?

(K-SAT) given a formula φ, does there exists a s ∈ I such that
there exists η ∈ PathK(s) such that η |= φ?

Table 2.1: Definition of satisfiability, validity and model checking problem.

the systems. The advantage of using specifications by automata is that both
the system and the specification are described with the same formalism.

Let Bspec be a Büchi automaton describing the specification of a system.
Then its language L(Bspec) is the set of allowed behaviours for the system. Let
Bsys be the Büchi automaton modelling the system. The system satisfies its
specification Bspec if

L(Bsys) ⊆ L(Bspec). (2.4)

Stated in words, this set inclusion says that the set of behaviours of the system
are among those behaviours allowed by the specification. We can restate (2.4)
using the automaton Bspec accepting the complement of the language L(Bspec)
(see Section 2.1.1) in the following way:

L(Bsys) ∩ L(Bspec) = ∅. (2.5)

If this intersection would not be empty, any infinite word contained would
represent a counterexample. From (2.5) we can derive in a straightforward
manner the model checking Algorithm 1 (reported in pseudo-code).

Algorithm 1 Automata theoretic procedure for model checking

1: procedure ModelChecking(Bspec,Bsys) do
2: Construct the automaton Bspec ;
3: Construct the automaton Bsys ∩ Bspec ;
4: if L(Bsys ∩ Bspec) = ∅ then
5: Output:“The system satisfies the specification”;
6: else
7: return as a counterexample a word in L(Bsys ∩ Bspec);
8: end if
9: end procedure ModelChecking

In many cases, the specification is not directly expressed in terms of au-
tomata but by a specification language such as LTL. There exists a method

22 Chapter 2 – Preliminaries

that automatically translates an LTL formula φ into an automaton, say Bφ,
that accepts precisely the runs satisfying φ [51]. In this method, Bspec (of Al-
gorithm 1) is represented by Bφ. It is interesting to note that when Bspec is
obtained by the translation of a LTL formula φ, the construction of the com-
plemented automaton (cf. step 1) can be skipped by constructing directly the
automaton describing ¬φ, i.e., B¬φ.

We have seen in Section 2.1.1 how the construction of the automaton Bsys ∩
Bspec can be done. The condition L(Bsys ∩ Bspec) = ∅ is not straightforward
and therefore deserves some further explanation.

Checking for emptiness. Since an accepting run ρ of a Büchi automaton
B = 〈Σ, S,→, I, F, L〉 contains infinitely many occurrences of accept states and
S is finite then there must exist ρ′ and ρ′′ such that ρ = ρ′ρ′′ and all the states
in ρ′′ appear infinitely many times. Hence, states in ρ′′ must be contained in a
strongly connected component (SCC), say Sρ′′ . Furthermore, since ρ is a run,
it follows that:

(a) Sρ′′ is reachable from an initial state;

(b) Sρ′′ ∩ F 6= ∅.

Conversely, to any SCC for which (a) and (b) holds, a corresponding accepting
run of B does exist. This suggests that in order to verify that the language is
not empty, we can check for the existence of a SCC reachable from an initial
state and containing at least an accepting state. Finding such a SCC boils
down to finding a cycle containing some accepting state. In fact, if there exists
a SCC then this must be contained in a cycle, conversely, if there exists a
cycle, it must correspond to a SCC. The implication of this observation is
that it is possible to represent a run of a Büchi automaton in a finite way.
This is particularly interesting for runs of Bsys ∩ Bspec, since they correspond
to computations in which the system does not satisfy the specification, i.e.,
counterexamples. Summarising, two steps must be done:

1. find the set Freach of all accept states reachable from an initial state;

2. find a cycle containing some state s ∈ Freach .

The construction of Freach can be done in linear time by a depth-first search.
Step 2, which amounts to detecting cycles in a finite graph, can also be done
in linear time using Tarjan’s algorithm [107] for constructing SCCs in a graph.
The complete procedure for step 1 and 2 will have a time complexity of O(|S|+
|→|). A slightly better solution is the Algorithm 2 known as nested depth-first
search and proposed in [35]. It detects reachable accept states and cycles
containing them at the same time. The advantage of this last solution is that
the search can be done on-the-fly. In particular, errors are detected while
traversing the state space and the procedure can be stopped as soon as the
first error is caught. The procedure NestedDFS can be explained as follows.

2.1 Model checking and temporal logics 23

Algorithm 2 Nested depth-first search

1: procedure NestedDFS(B) do
2: for all s ∈ IB do
3: DFS1(s);
4: end for
5: return [];
6: end procedure NestedDFS
7:

8: procedure DFS1(s) do
9: Insert s in Stk1;

10: for all s′ such that s→ s′ do
11: if s′ /∈ Stk1 then
12: DFS1(s′);
13: end if
14: end for
15: if s ∈ FB then
16: DFS2(s);
17: end if
18: end procedure DFS1
19:

20: procedure DFS2(s) do
21: Insert s in Stk2;
22: for all s′ such that s→ s′ do
23: if s′ ∈ Stk1 then
24: return counterexample;
25: else if s′ /∈ Stk2 then
26: DFS2(s′);
27: end if
28: end for
29: end procedure DFS2

It calls for every initial state the procedure DFS1 that, in turn, traverses in
depth-first manner the graph, putting every visited state in the stack Stk1

till it has to backtrack on an accept state. Then, DFS1 calls DFS2 which is in
charge of finding out if the current accept state s is contained in a cycle. Again,
DFS2 explores the state space in depth-first manner till it finds a successor of
the accept state, say s′, that has been already visited by DFS1, i.e., s′ ∈
Stk1. If this is the case, a cycle has been found and the procedure terminates
successfully. The counterexample is given by the sequence of states in the stack
Stk1 up to s that constitutes the prefix of the SCC. Finally, the SCC itself is
constructed by taking the states in Stk2 that form a path from s to s′ and
closing the cycle with the states in Stk1 that form a path from s′ to s.

24 Chapter 2 – Preliminaries

2.1.6 The tableau approach to model checking

An alternative algorithm for model checking LTL is based on the construction
of a tableau graph. This method was introduced by Lichtenstein and Pnueli
in [77]. In general, the construction of the tableau graph depends on the
formula φ we want to model check and on the Kripke structure K. The main
property of the tableau graph is the following:

a model for the formula φ can be extracted from it if and only if the
formula is satisfiable in K.

Moreover, another important property of the tableau is that it is a finite struc-
ture which embeds all possible models of the formula. We briefly summarise the
construction of the tableau graph for the formula φ and the Kripke structure
K.

The closure of φ, denoted by CL(φ), is the set of formulae whose truth value
may influence the truth value of φ itself.

Definition 2.1.8. Let φ be an formula. The closure of φ, CL(φ), is the smallest
set of formulae (identifying ¬¬ψ with ψ) such that:

• φ, tt,ff ∈ CL(φ);

• ¬ψ ∈ CL(φ) iff ψ ∈ CL(φ);

• if ψ1 ∨ ψ2 ∈ CL(φ) then ψ1, ψ2 ∈ CL(φ);

• if Xψ ∈ CL(φ) then ψ ∈ CL(φ);

• if ¬Xψ ∈ CL(φ) then X¬ψ ∈ CL(φ);

• if ψ1 Uψ2 ∈ CL(φ) then ψ1, ψ2,X(ψ1 Uψ2) ∈ CL(φ).

The tableau graph forK and φ denoted byGK(φ) is given by a set of vertexes
AK(φ) and a set of arcs → ⊆ AK(φ) × AK(φ). The vertexes of the tableau,
called atoms, are composed by states of K decorated with a maximal set of
consistent formulae compatible with the labelling of K, i.e. the interpretation
function L.

Definition 2.1.9. Given a Kripke structure K = 〈S, I,→, L〉, and a formula
φ, an atom is a pair A = (s,D) with s ∈ S and D ⊆ CL(φ) ∪ AP such that:

• if p ∈ AP , then p ∈ D iff p ∈ L(s);

• if ψ ∈ CL(φ), then ψ ∈ D iff ¬ψ /∈ D;

• if ψ1 ∨ ψ2 ∈ CL(φ) then ψ1 ∨ ψ2 ∈ D iff ψi ∈ D for i = 1 or i = 2;

• if ¬Xψ ∈ CL(φ), then ¬Xψ ∈ D iff X¬ψ ∈ D;

• if ψ1 Uψ2 ∈ CL(φ), then ψ1 Uψ2 ∈ D iff either ψ2 ∈ D, or both ψ1 ∈ D
and X(ψ1 Uψ2) ∈ D.

2.1 Model checking and temporal logics 25

We denote the first and the second components of an atom A = (s,D) by sA
and DA, respectively.

To complete the construction of the graph GK(φ), we must define arcs
between vertexes. Those take into account the semantics of the formulae con-
tained in the atoms and the transitions of the Kripke structure.

Definition 2.1.10. The tableau graph GK(φ) for K and φ consists of vertexes
AK(φ) and arcs −→ ⊆ AK(φ)×AK(φ) determined by:

(s,D)→ (s′, D′) ⇔

{
s→ s′ and
∀Xψ ∈ CL(φ), (Xψ ∈ D ⇔ ψ ∈ D′)

Hence the resulting graph will mimic the behaviour of K as long as the
formulae involving temporal operators are satisfied. For the definition of the
arcs, it is sufficient to require the consistency of the next operator X.

A path π of GK(φ) is an infinite sequence of atoms π = A0A1A2 · · · in G
such that

• sAi −→ sAi+1 for all i ≥ 0;

• if ψ1 Uψ2 ∈ DAi for some atom i ≥ 0, then there exists an atom Aj with
j ≥ i such that ψ2 ∈ DAj .

Thus a path2 corresponds to a run of K and while ensuring the satisfaction of
until formulae. Let σ = sA0sA1sA2 · · · , the path π fulfils φ if

σ |= φ.

The presence of a formula in an atom Ai belonging to a fulfilling path π is
related to the satisfaction of that formula in the model underling the path
from state i on, i.e., πi. More precisely we have the following fact whose proof
is given in [77].

Proposition 2.1.11 (Lichtenstein and Pnueli [77]).

• π = A0A1A2 · · · fulfils φ if and only if φ ∈ DA0 .

• φ is satisfiable if and only if there exists a path π fulfilling it.

By the previous proposition we can conclude that in order to check the
satisfiability of a formula φ in K it is sufficient to look for a fulfilling path in
the tableau GK(φ). However, in a graph there may be infinitely many different
paths, therefore Proposition 2.1.11 still does not provide us with a computable
method.

A strongly connected subgraph (SCS) G′ ⊆ GK(φ) is called self-fulfilling if
for every A ∈ G′ such that ψ1 Uψ2 ∈ A there exists B ∈ G′ such that ψ2 ∈ DB .
Let Inf (π) denote the set of atoms that appear infinitely often in the path π.

2By some unfortunate coincidence, the term “path” is used for two different mathematical
objects, i.e., a sequence of states in a Kripke structure and a sequence of atoms in the tableau
graph. In the following we will specify which object we are referring to, unless it is clear from
the context.

26 Chapter 2 – Preliminaries

Proposition 2.1.12 (Lichtenstein and Pnueli [77]).

• If π is fulfilling then Inf (π) is a self-fulfilling SCS of GK(φ).

• for every self-fulfilling SCS G′ ⊆ GK(φ) there exists a fulfilling path π
such that Inf (π) = G′.

An immediate consequence of this proposition is that φ is satisfiable if and
only if there exists an initial atom A in GK(φ) such that φ ∈ DA and a self-
fulfilling SCS is reachable from A. Indeed this proposition can be used to define
a mechanical way to verify the satisfaction of the formula φ since there are only
a finite number of SCS in GK(φ).

The algorithm presented in this section has a complexity linear in the size
of K and exponential in the size of φ (cf. [77]).

2.1.7 Automata theoretic versus tableau approach

After having summarised the automata theoretic approach in Section 2.1.5
and the tableau method in Section 2.1.6, it is natural to ask which method is
more suitable for our study. The argument in favour of the automata-theoretic
approach is essentially that it can be performed on-the-fly [51] meaning that it
is not necessary to construct the complete state space of the Büchi automaton
Bsys modelling the system. Instead, states of Bsys are generated only when
it is needed during the construction of the product automaton. This means
that it is not always necessary to construct the complete Bsys since we can find
a counterexample before, and thus we can stop the procedure at that point.
As a direct consequence, the automata theoretic method may help to alleviate
the problem of state-space explosion. This occurs when in order to model the
system accurately, the automaton Bsys needs a number of states that is too large
(normally exponential in the number of components of the system) and exceeds
the computer memory. Currently this is the main problem of model checking.
In contrast, in order to apply the tableau method described in Section 2.1.6 we
need the complete Kripke structure modelling the system which (again) can be
rather large.

Of course, the automata-theoretic approach (for LTL) relies on the feasibil-
ity of the construction of the Büchi automaton corresponding to the negation
of the LTL formula we want to verify. However, if we change focus, and from
LTL we move to some other specification language, the situation may be dif-
ferent. And in fact, this is what happens, for example, with the logic A``TL
that we study in Chapter 4. For this logic, the construction of the automaton
for a given formula is most likely undecidable3 due to the very dynamic na-
ture of its models. Being able to construct the automaton for every formula
of the logic corresponds to solve the satisfiability problem (SAT), although we
are mainly interested in the model checking problem (MC) (cf. Section 2.1.7).

3The study we have carried out in the past strongly suggest the undecidability of the
problem, although we do not have any proof of this conjecture.

2.2 History-Dependent Automata 27

This consideration has led us to consider the tableau method. In that approach,
the only Kripke structure involved is the one corresponding to the behaviour
of system (that is given). Furthermore, this given Kripke structure guides us
in the construction of the tableau graph. Hence, in this sense, the method
appears to be more promising, since somehow, it overcomes the construction
of the automaton corresponding to the formula. In the subsequent chapters
we will use the tableau method and see that it can be effectively exploited to
develop model-checking algorithms for logics with a high degree of dynamism
such as A``TL.

2.2 History-Dependent Automata

History-dependent formalisms are those whose actions performed in a partic-
ular state may depend on actions performed in previous states. A typical
history-dependent formalism is the π-calculus [82] where, for example, channel
names are created in some state and can be referred to in some other succes-
sive state. Other history-dependent formalisms are CCS with localities [11] and
Petri Nets. In general, the semantics of history-dependent formalisms is given
in terms of labelled transition systems. Ordinary automata, such as LFSA
given by Definition 2.1.4, present some limitations in dealing with such kinds
of calculi. Even very simple actions may produce infinite state spaces. This
is clearly problematic for the application of formal techniques such as model
checking which, as we have seen, mostly require the inspection of a finite-state
model. Montanari and Pistore introduced an extension of ordinary automata,
called History-dependent (HD) automata [83, 84, 90] that are meant to rep-
resent adequate models for history-dependent formalisms, overcoming there-
fore the limitations of LFSA. Notice that object-based systems have a clear
history-dependent behaviour since, for example, objects are created and can
be referenced to in the future. Therefore, the features of HD-automata can be
exploited to model the birth and death behaviour of objects.

We quickly introduce a (specialisation of the) definition of HD-automata
that differs slightly from the original definition of HD-automaton given in [84]
but easier fits towards our needs4. Let N be a countable set of global names.

Definition 2.2.1. A HD-automaton A is a tuple 〈Q,N,−→, q0〉 where:

• Q is a (possibly infinite) set of states;

• N : Q→ 2N is a function that associates to each state q ∈ Q a finite set
Nq of names;

• −→⊆ Q × (N ⇀ N) × Q, such that for q −→λ q
′, we have λ : Nq ⇀ Nq′

injective;

4This is only done for the sake of simplicity in the presentation since the definitions of
our formalisms (cf. Chapters 4 and 5) resemble the one given here.

28 Chapter 2 – Preliminaries

b
c

g
d

f

s s′

a

e

Figure 2.2: A simple HD-automaton.

• q0 ∈ Q is an initial state;

States of an HD-automaton are equipped with a set of local names that can
be created dynamically. The transitions are equipped by a partial injective
mapping λ from names of the source state to names of the target state. Since
names do not have a global identity, a single state of an HD-automaton can
be seen as an abstraction of the set of all states that differ only by bijective
re-namings of names. The correspondence between the local names of two
successive states is ensured by the mapping λ attached to the transitions.

The difference between Definition 2.2.1 and the original definition of HD-
automaton given in [84] is essentially that in the latter, not only states are
equipped with names but also transitions and labels (in the transitions). The
correspondence between names of the source state with the those of the target
state is split in two mappings (instead of one like in Definition 2.2.1): the first
mapping goes from the names of the source state to the names of the transitions
and second mapping from the name of the target state to the names of the
transition. We will not further consider the difference between Definition 2.2.1
and that given in [84].

Names appearing in a state (of an HD-automaton) are considered to be
currently in use, i.e., alive. The mapping attached to the transition is partial,
giving the possibility to distinguish three categories of names:

(i) names that are mapped from the source to the target state are preserved
in the transition;

(ii) names that appear in the source state but not in the target state are
deallocated;

(iii) names that appear only in the target state are created.

Example 2.2.2. A simple HD-automaton is shown in Figure 2.2. We have
Q = {s, s′}; the initial state (q0 in the definition) is s. Names are depicted
by small circles, therefore we have: N(s) = {a, b, c}, N(s′) = {d, e, f, g}. The
mapping λ is represented by dashed lines. By of λ, b is deallocated when the
transition is fired, whereas the name a in s is renamed into g in s′ and c is
renamed into f . It is important to stress the local nature of names, in fact if
we assume that a represents a name of an object, then the same object after
the transition is called g. Names d and e are new in s′.

2.3 Object-based systems 29

The local nature of names in HD-automata is helpful because the states can be
identified up to renaming, i.e., the actual identity of names does not matter.
This is beneficial when it comes to give the semantics to history-dependent
formalisms such as the π-calculus. Without entering in the details (for which
we refer the interested reader to [84]), it is enough to mention that the se-
mantics of π is usually given in terms of standard labelled-transition systems.
Furthermore, in the π-calculus, an agent in every state uses a certain set of
names. Also, there exists an input action in which the agent receives a name
via a channel that is bound to a variable, say x. However, an input action
generates a infinite number of transitions because x can be bounded with any
possible name in N not used by the agent (and there are infinitely many of
such names). Thus, even a really simple agent (with only an input action)
may generate an infinite transition system. The important point there is that
it does not matter which name is bound to x, every choice is equivalent, but
this fact is not exploited in a standard transition systems semantics. With
local names instead, since we can identify states up to renaming of names, the
infinite branching transitions can be collapsed into a single one by, for exam-
ple, choosing a representative name to bind to x. Another advantage is that
it is possible to obtain a minimal automaton up to bisimulation. Finally, it is
interesting to note that a large class of finitary π-calculus agents5 correspond
to finite-state HD-automata that in turn can be translated into finite ordinary
automata, in such a way that bisimilar HD-automata correspond to bisimi-
lar ordinary automata. Dealing with the latter is convenient since standard
algorithms may be applied.

In Section 2.3.2, we will see that object-based systems are highly dynamic
also because of the allocation and deallocation of objects. Here we have learnt
that HD-automata are a formalism suited to model (in a compact way) the
allocation and deallocation of names. In studying models oriented towards the
verification of dynamic properties of object-based systems it therefore becomes
natural to look at HD-automata as a starting point. Indeed, in Chapter 4
and 5 we will define two classes of Büchi automata — very much inspired by
HD-automata — that also exploit the advantage of having local names and
remapping in order to obtain more compact models.

2.3 Object-based systems

In this thesis, we confine ourselves to object-based systems, i.e., object-oriented
systems in which inheritance and sub-typing are not considered 6. Object-based
systems are composed by objects that run concurrently and communicate with

5For the reader familiar with the π-calculus, finitary agents are those where parallel com-
position does not occur in the bodies of their recursive definitions.

6In other classifications (e.g. [1]), object-based languages do not have classes in contrast
to class-based languages. We will not use this classification.

30 Chapter 2 – Preliminaries

each other. Objects are dynamic, can be created in arbitrary number and can
be deallocated during the computation.

Objects. At the conceptual level, an object can be seen as an entity that has
an identity, a state and a behaviour. This definition has originally been given
by Booch [8].

The state of the object contains internal data that can only be accessed
from the outside by invoking one of the object’s methods. The invocation is
done by sending a message to the object. Data are usually called attributes and
they have a value of a certain type. Depending on the definition of the object,
some attributes may be modified while others may not.

The behaviour of the object is the reaction that the object has after having
been stimulated by a message from the outside world. The way an object
behaves is in general dependent from its current internal state. The outside
world is constituted by other objects running concurrently.

The identity of the object is distinct from its state: the value of its attributes
may change during the computation although the object’s identity remains
fixed. In general an object is created at a certain point in time, and it may die
successively. However, between the moment in which the object is born until
it dies, the object is continuously alive and is identified by its identity.

In later chapters in this thesis we will deeply investigate the nature of object
identity. In our models, we will clearly distinguish between the identity of an
object and its state. We will also give identity to a method invocation. A
justification will become clear later.

Classes. On the static level, the corresponding notion of object is that of a
class. A class is a template for the creation of its instances, i.e., its objects. A
class specifies the state of its objects by describing the attribute types, and the
objects behaviour by the definition of a set of methods. A method is a fragment
of code that implements an operation. The implementation is hidden, the only
thing the outside world knows is that the objects belonging to the class provide
that operation. Methods of a class are executed by instances of the same class.
The set of class operations that can be invoked from the outside is known as
the interface of the class. Interfaces are useful to increase the abstraction of the
classes since methods and attributes not included in any interface are hidden
to the outside7. We refer to the object executing a method as the owner of
the method. A special keyword that may be used in the code of the method is
self. At run-time, it refers to the identity of the owner8. By self a method
can access the attributes (i.e., the state) of its owner.

7Here we use the term “abstraction” in a different way than the rest of the thesis, where
in general abstraction will describe some technique to reduce the state space of a model.

8Some languages such as Java of C++ prefer the notation this instead of self.

2.3 Object-based systems 31

2.3.1 The Unified Modelling Language

The Unified Modelling Language (UML) [9, 98] is the standard modelling lan-
guages accepted by the Object Management Group (OMG) in 1997. It is the
result of a merging process of different notations previously existing.

The UML provides the designer with several types of diagrams that con-
centrate on a special part of the system, amongst others:

• the use case diagram concentrates on the interaction between the user of
the system (called actors) and the system itself;

• the class diagram focuses on the relation between classes of the system.

• the sequence diagram describes the behaviour of the system by showing
the interaction of objects through the messages they interchange.

• the object diagram models a single state (of a computation) of the sys-
tem (sometimes called snapshot). It contains the values of the object
attributes as well as the references between objects; the latter take the
form of links among them.

• the state chart diagram describes the life cycle of an object by a sequence
of states of a state machine associated with the object.

Since in this thesis we will be concerned only with class diagrams, we introduce
some of their basic concepts.

Class diagrams. In UML, the static structure of classes in the system and
their associations are described by class diagrams that illustrate for each class

• the attributes with their type, and

• the methods with their formal parameters.

A simple example class diagram (adopted from [111]) is depicted in Figure 2.3,
Boxes represent classes. Three parts, delineated by a line, can be distinguished
in a box. The class name is indicated in the upper part, thus in our system
we have three classes: Hotel, Room, and Guest. The attributes of the class
together with their types are reported in the middle part of the box. For exam-
ple, the class Hotel has only two attributes numOfFloors and numOfRooms,
whereas both Room and Guest have three attributes. The attribute name is
followed by the attribute type (separated by a colon sign ‘:’). In the example,
both numOfFloors and numOfRooms have type Integer . Finally, the bottom
part of a box lists the operations (or methods) of the class. The signature of
an operation describes its name, its formal parameters and the return type (if
any). The formal parameters are depicted between parentheses indicating also
their type. Thus for example, the class Hotel has two operations checkIn and
checkOut , respectively, with only one parameter of type Guest and without
return type. Classes Room and Guest do not have any operation.

32 Chapter 2 – Preliminaries

Boxes are interconnected by lines denoting associations. They represent the
relationship between classes. Each direction of an association has an optional
name (called role name) and multiplicity giving information on the number of
elements related by the association. For instance, the multiplicity 1..∗ states
that a Hotel has at least one room, whereas on the association relating Hotel
and Guest, ∗ says that the Hotel can have a number of guests greater or equal
to zero (i.e., the hotel can be empty). If the multiplicity is not specified it is
intended to be one.

Note that class diagrams only address the static aspects of the system, not
its dynamic (i.e., process) aspects. The latter aspects are described by other
diagrams such as UML state-charts.

Navigation. An important factor is that associations between classes in
UML diagrams can be traversed. Thus, they constitute a path within the model
that allows to reach a class starting from another class. This phenomenon is
referred to as navigation (or navigability) and allows to refer to attributes
and methods of a (collection of) object(s) in the system. As we will see in
Section 3.4, in the notation used by the Object Constraint Language [110],
navigations are expressed by indicating the role name attached to the associa-
tion we want to traverse. For instance, for an object of class Hotel denoted by
the variable h, the expression h.guests refers to the path between class Hotel
to the class Guest using the association with role name guests. Navigations are
parsed from left to right. The navigation expression h.guests.guestCode refers
to the collection of guests’ code of h.

2.3.2 Dynamic allocation and deallocation

Concurrent object-based systems are characterised by a highly dynamic be-
haviour. A first interesting source for this dynamic behaviour comes from the
lives of objects. During the computation, objects are created by some cre-
ation mechanism provided by the programming language that must be invoked
explicitly. For example, for the Hotel example in Java we would write

new Hotel()

to create an instance of the class Hotel. Here, Hotel() represents a constructor,
that is, a procedure specifying in detail how to build the object and how to
initialise its attributes. Several constructors can be defined for the same class
according to different possibilities and/or needs to create objects.

Moreover, during the computation some object may die either because of
an explicit command given by the programmer (such as delete in C++) or
because of some system routine (e.g. garbage collection). In any case, an
object-based computation does not have a static pre-allocated number of ob-
jects that will remain fixed till the end. This model of computation is therefore
different from the more traditional programming languages (e.g. Pascal or C)

2.3 Object-based systems 33

rooms

guests

floorNumber : Integer

roomNumber : Integer

numOfBeds : Integer

hotel

room
0..1

1..*

checkIn(g : Guest)

Hotel
Room

Guest

hotel

checkOut (g : Guest)

numOfFloors : Integer

0..1

guests

*

*
age : Integer

numOfRooms : Integer

guestCode : Integer

numOfNights : Integer

Figure 2.3: The Hotel class diagram.

where most of the resources are allocated statically according to the declara-
tions contained in the program. Figure 2.4 depicts a sequence of three run-time
states of an object-based system. The internal structure — that sometimes will
be referred to as (object-) heap — shows the alive objects (and their references).
In the state s1, six objects are alive: o1 through o6. In the successor state s2,
the object o5 has died, whereas o7, o8 have been created. Finally, in state s3,
object o1 dies. We can paraphrase the previous description moving the focus
towards the lives of the single heap-allocated objects9 as follows:

In state s1, the objects o1, o2, o3, o4, o5, o6 are alive. In state s2
object o5 is dead and o1, o2, o3, o4, o6, o7, o8 are alive, from which o7
and o8 are new (i.e., fresh) whereas o1, o2, o3, o4, o6 are old. In state
s3 the object o1 is dead and o2, o3, o4, o6, o7, o8 are alive and at the
same time old.

This second description gives us an important hint: the substantial properties
that allow us to capture the dynamism of the system w.r.t. the lives of objects
are given by the following four adjectives: new, old, alive, dead. This will be
used later on. Furthermore, it is clear that “old” is synonym of alive but non-
new as well as “dead” is synonym of non-alive, therefore in principle we can
focus on only two of this object status10.

9This is essentially the dynamic evolution of the system we want to capture
10Provided, of course, that we can use an operator expressing negation.

34 Chapter 2 – Preliminaries

s1

s2

s3

o3 o4

o6

o2

o1

o3 o4

o6

o2

o1

o3 o4

o6

o2

o7

o8

o8

o7

o5

Figure 2.4: Sequence of states in a concurrent object-based system.

The models that we aim to develop must be as general as possible. In
principle, there is no reason to admit in our models only objects that are
created during the computation and that will die at some point in the future.
In the history of the humanity many models have been developed where entities
were supposed to have been always alive, or that would not die. It is enough
to think about the several religions or ancient mythology. Thus — beside
(standard) objects that are born in some state of the computation and die
in some other state — we can very well have immortal objects that do not
die at all during the computation (cf. Java real-time); or eternal objects that
are alive but they are neither born nor die in any state of the computation.
Modelling the states of an object-based computation as described in Figure 2.4
is quite expressive and general. Unfortunately, the model becomes somehow
naively idyllic once we try to apply it for model-checking technology. There
are two problems related to the object model presented above. First of all,
as we have previously remarked, the model-checking motto is brute force: the
state-space must be completely covered in order to fully apply this technique.
Secondly, computer memory is finite. As a consequence, we cannot just let the
number of object grow in a naive way. Their number may become unbounded
and therefore the state space infinite. Bounding the number of objects that
may be created seems to be a rather strong requirement on the model (and on
the program). Moreover, techniques such as garbage collection are in general
not enough to maintain the number of objects bounded. Different strategies

2.3 Object-based systems 35

are needed.

On object-heap abstraction. Abstraction can be employed. Unfortunately,
there do not exist general recipes for the definition of “good” object-heap ab-
stractions, therefore the task is not trivial. Many factors may play a role: the
kind of property we are interested in; the kind of classes that compose our
system; and so on. Sometimes an abstraction may be too coarse, and therefore
not informative enough; on the contrary it might be too fine, keeping far too
many details making it intractable; some other abstractions can be unsound
— therefore providing us with wrong information. Theories such as abstract
interpretation [36, 37] help in proving the soundness of an abstraction; how-
ever, to define the abstraction itself is almost a complete manual exercise. In
this thesis we will also investigate some possible abstractions that may render a
finite state space — even if we do not force any bound on the number of objects
(or threads) that can be created — but still providing us with the possibility
to deal with some interesting properties about the birth and death of objects
(and threads).

2.3.3 Dynamic references

Associations between classes in the UML class diagram correspond at the run-
time level to the concept of references between objects. References are at-
tributes whose type is not a basic one (e.g., integer, boolean etc.) but instead
another class. In Figure 2.4, references are represented by direct arrows con-
necting objects. For instance, in state s1, the object o1 has a reference to o2.
A reference can be either null, i.e., it is not pointing to any object or it can be
“attached” to another object. The reference mechanism gives the possibility
to combine objects and therefore to create rather complicated structures. Fur-
thermore, programming languages provide the programmer with the possibility
to manipulated references at run-time. Simple statements like

x := y (2.6)

where x, y have type reference, allow to detach existing references and to attach
new ones, therefore changing the heap-object topology. From state to state,
the evolution of this heap topology produces the second form of interesting
dynamic behaviour in the object model which we will try to investigate in
Chapter 5.

For example, the variable x loses the reference to the object it is pointing
to before the assignment (2.6) and the reference is substituted by y’s reference.
After (2.6) x and y have a pointer to the same run-time object. This well-
known phenomenon is called dynamic aliasing. The consequences of this kind
of dynamic evolution of the heap topology are rather interesting. From state to
state non-trivial interdependencies even among apparently non-related objects
may be introduced. The unpleasant effect is that, in general, the execution of

36 Chapter 2 – Preliminaries

an operation may influence objects not even mentioned in the expression. This
has been called by some authors the complexity of pointer swing [67, 94]. The
problem seems very dangerous since it easily occurs and at the same time it is
difficult to debug.

Another very common problem due to the dynamic nature of references is
the possibility to dereference, at any moment, a null reference and, as a con-
sequence, an exception is thrown by the run-time environment and the com-
putation stops (as in Java). The ideal solution would be that the compiler
could statically detect any attempt to dereference a null pointer. In reality,
this cannot be done since such problems lie beyond the range of capabilities of
conventional type systems. Therefore, so far, the programmer is the only one
responsible for ensuring that his program “does not go wrong” in this sense.

In object models where references are taken into account, an object is called
reachable if there exists a path of references starting from a program element
(such as a program variable or a formal parameter of a method) and ending
at the object. Usually, only reachable objects are seen as useful since they can
be manipulated whereas the unreachable ones are considered to be “garbage”
because they cannot be used anymore. An issue somehow related to the life of
objects, and at the same time, to the manipulation of references is what to do
in case an object becomes unreachable. In general, three different approaches
can be taken [81]:

• the casual approach follows the philosophy that unreachable objects are
left in memory for ever;

• the manual deletion approach gives the programmer the possibility to
delete explicitly the objects that are considered garbage through either
some algorithm or by explicit programming constructs;

• the automatic garbage collection approach burdens the run-time environ-
ment with the responsibility to dispose of the garbage, freeing therefore
the corresponding memory.

Here, we do not argue which approach is the best. In general, the third one is
very well accepted, although in some cases, the other two are also used. For
example, C++ and Objective-C provide the programmer with the possibility
to dispose objects explicitly. In some real-time applications, it is preferred to
allocate all the objects in the beginning of the computation and let them (or
part of them) live for ever even if they become garbage (cf. immortal objects
in Java real-time [49]). This avoids the degree of uncertainty in the response
of the system induced by the execution of the garbage collector routines.

Since in Chapter 4 we are interested in studying properties of the system in
relation to the allocation and deallocation of objects we will try to have a model
as general as possible. Therefore, we will not make a real choice. This allows
us to use the model also to reason about garbage collector routines. Instead in
Chapter 5 where we will define models to reason about references we will use
automatic garbage collection in order to simplify the mathematical machinery.

3

A logic for object-based

systems

3.1 Introduction

This chapter presents a temporal logic, referred to as BOTL (Object-Based
Temporal Logic), that is aimed at specifying static and dynamic properties of
object-based systems. The dynamic properties are related to the behaviour of
the system when time evolves, while the static properties refer to the relations
between syntactical entities such as classes. The logic is an object-based ex-
tension of the linear temporal logic LTL [91], a formalism for which efficient
model checking algorithms and tools do exist. The object-based ingredients
in our logic are largely inspired by the Object Constraint Language (OCL)
[88, 110, 111], that is part of the Unified Modelling Language (UML) [9, 98].
OCL allows expressing static properties over class diagrams in a textual way.
The precise relationship with OCL is studied by defining a mapping of a large
fragment of OCL onto BOTL.

The semantics of BOTL is defined in terms of a general operational model
that is aimed to be applicable to a rather wide range of object-oriented pro-
gramming languages. The operational model is a (generalised) Büchi automa-
ton, in which states are equipped with information concerning the status of
objects and method invocations. The interpretation of BOTL in terms of these
automata is defined in a formal, rigorous way. Such a formal approach is in
our opinion indispensable for the construction of reliable software tools such as

37

38 Chapter 3 – A logic for object-based systems

model checkers. Besides, the semantics of BOTL together with the aforemen-
tioned translation of OCL provides a formal semantics of OCL. This approach
resolves several ambiguities and unclarities in OCL that have been reported
in the literature, e.g., [31, 53, 55]. A significant fragment of OCL is covered
including, amongst others, invariants, pre- and postconditions, navigations and
iterations.

This chapter is organised as follows: Section 3.2 defines the BOTL syntax
and data types. Section 3.3 defines the operational model in which the logic
is interpreted, as well as the formal semantics of BOTL. Section 3.4 gives a
short introduction to OCL as a primer for Section 3.5 where the mapping from
OCL to BOTL is defined. Finally, in Section 3.6 we discuss some related work,
focusing in particular on the Bandera Specification Language.

3.2 Syntax of BOTL

Before introducing the syntax of BOTL we present the data types over which
logical variables may range. In the following we assume given:

• a (countable) set VName of variable names ;

• a (countable) set MName of method names, ranged over by M ;

• a (countable) set of class names CName, ranged over by C.

3.2.1 Data types and values

BOTL expressions rely on a language Type of data types, defined by the
following grammar:

τ(∈ Type) ::= void | nat | bool | τ list | C ref | C.M ref

where C ∈ CName and M ∈ MName are arbitrary. The types have the
following intuitions:

• void is the unit type; it only has the trivial value ().

• nat is the type of natural numbers.

• bool is the type of boolean values tt (true) and ff (false).

• τ list denotes the type of lists of τ , with elements [] (the empty list)
and h :: w (for the list with head element h and tail w). For the sake
of readability, we will often write lists as comma-separated sequences
enclosed by square brackets; e.g., 1::2 :: [] is written [1, 2], whereas [[1], [2]]
denotes (1 :: []) :: (2 :: []) :: [].

• C ref denotes the type of objects of class C.

3.2 Syntax of BOTL 39

• C.M ref denotes the type of method occurrences (discussed in more detail
below) of the method M of class C.

Let us specify the data values of these types more precisely. Among others we
will use (references to) objects and events as data values; the latter correspond
to method occurrences , i.e., invocations of a given method of a given object.
For this purpose, we introduce the following sets (for all C ∈ CName and
M ∈MName):

OIdC = {C} × N

EvtC,M = OIdC × {M} × N .

Thus, object identities o ∈ OIdC correspond simply to numbered instances of
the class C, whereas events (o,M, j) ∈ EvtC,M are numbered instances of the
method name M , together with an explicit association to the object o ∈ OIdC

executing the method. We also use

OId =
⋃

C

OIdC

Evt =
⋃

C

⋃

M

EvtC,M

ranged over by o and ζ respectively. OId and Evt are the universe of object
ids and events, respectively.

Example 3.2.1. Consider the Hotel class diagram of Figure 2.3. The following
are instances of the class Hotel:

(Hotel, 1) (Hotel, 2) (Hotel, 31) (Hotel, 127) . . .

The following are events related to the method checkIn :

((Hotel, 1), checkIn , 1) ((Hotel, 1), checkIn, 2)
((Hotel, 31), checkIn, 1) ((Hotel, 127), checkIn, 3) . . .

Note that the first two events represent different executions of method checkIn
performed by the same object.

The combined universe of values will be denoted by Val; the set of values
of a given type τ ∈ Type is denoted by Valτ . We define:

Valvoid = {()}

Valnat = N

Valbool = {ff, tt}

Valτ list = {[]} ∪ {h :: w | h ∈ Valτ , w ∈ Valτ list}

ValC ref = {null} ∪OIdC

ValC.M ref = EvtC,M .

40 Chapter 3 – A logic for object-based systems

There exists a large number of standard boolean, arithmetic and list operations
over these values, which we will use when convenient, without introducing them
formally. As an example consider:

• + : Valnat ×Valnat → Valnat is the standard sum on natural numbers.

• sort : Valτ list → Valτ list orders a given list of values of type τ .

• flat : Valτ list list → Valτ list flattens nested lists.

Finally, there is a special element ⊥ /∈ Val that is used to model the “unde-
fined” value: we write Val⊥ = Val∪{⊥}. All operations are extended to ⊥ by
requiring them to be strict (meaning that if any operand equals ⊥, the entire
expression equals ⊥). For instance, for lists we have ⊥ ::w = ⊥ and h ::⊥ = ⊥.

3.2.2 Syntax of BOTL

The syntax of BOTL is built up from two kinds of terms: static expressions
SBOTL (for a large part inspired by OCL, see Section 3.4) and temporal formulae
TBOTL (largely taken from LTL). We assume a set of logical variables LVar.
BOTL terms are the defined by the grammar:

ξ(∈ SBOTL) ::= x | ξ.a | ξ.owner | ξ.return | ξ new | ξ alive | ω(ξ, . . . , ξ)

| with x1 ∈ ξ from x2 := ξ do x2 := ξ

φ(∈ TBOTL) ::= ξ | ¬φ | φ ∨ φ | ∃x ∈ τ : φ | Xφ | φUφ

where τ ∈ Type, a ∈ VName and x ∈ LVar. Apart from this context-
free grammar, we implicitly rely on a context-sensitive type system, with type
judgements of the form ξ ∈ τ , to ensure type correctness of the expressions; its
definition is outside the scope of this thesis.

Before defining the formal semantics in the next section, we give an informal
explanation of the BOTL constructs.

Static expressions.

• x ∈ LVar is a variable bound to a value elsewhere in the expression or
formula;

• ξ.a stands for attribute/parameter navigation. The sub-expression ξ pro-
vides either a reference to an object with an attribute named a or to
a method occurrence with a formal parameter named a; the navigation
expression1 denotes the value of that attribute/parameter. Navigation is
extended naturally to the case where ξ is a list of references; the result
of ξ.a is then the list of .a-navigations from the elements of ξ.

• ξ.owner denotes the object executing the method ξ.

1See Section 2.3.3 for an introduction to the concept of navigation.

3.2 Syntax of BOTL 41

• ξ.return denotes the return value of the method denoted by ξ (in case the
method has indeed returned a value, otherwise the result of the expression
is undefined; see below).

• ξ new expresses that the object or the method occurrence denoted by ξ
is fresh in the current state, i.e., it did not exist in any of the previous
states. Typically, an object is new, just after it has been created as
result of the execution of some mechanism for object creation provided
by the programming language at hand; A method occurrence is new at
the moment of the invocation of the method.

• ξ alive expresses that ξ denotes an object or method occurrence that is
currently alive. An object becomes alive when it is created and remains
alive until it is deallocated (e.g. by garbage collection), whereas a method
occurrence becomes alive when it is invoked and it is deallocated after it
has returned a value. This is made more precise in the semantics model;
see Section 3.3.1.

• ω(ξ1, . . . , ξn) (n > 0) denotes an application of the n-ary operator ω.
Thus, ω is a syntactic counterpart to the actual boolean, arithmetic and
list operations defined over our value domain. Possible values for ω in-
clude at least a conditional expression (“if-then-else”) as well as an (over-
loaded) equality test =τ for all τ ∈ Type (where the index τ is usually
omitted). We will use [[ω]] to indicate the underlying operation of which
ω is the syntactic representation.

• The with-from-do expression is inspired by the iterate feature of OCL
—which in turn resembles the fold operation of functional programming.
The expression binds logical variables and can therefore not be seen as an
ordinary operator. Informally, with x1 ∈ ξ1 from x2 := ξ2 do x2 := ξ3 has
the following semantics: first, x2 is initialised to ξ2; then ξ3 is computed
repeatedly and its result is assigned to x2 while x1 successively takes as
its value an element of the sequence ξ1. For instance, the expression

with x1 ∈ [1, 2, 3] from x2 := 0 do x2 := x1 + x2

computes the sum of the elements of the list [1, 2, 3] (= 6).

Temporal expressions. A temporal expression φ is built by the applica-
tion of classical propositional logic operators (¬, ∨ etc.) and LTL temporal
operators (X, U). As we have seen in Section 2.1.2, from the latter it is possi-
ble to derive other useful temporal operators. The basic predicates are given
by boolean expressions in SBOTL. We briefly summarise the intuition of the
temporal operators:

• Xφ expresses that in the next state the formula φ holds.

42 Chapter 3 – A logic for object-based systems

• φUψ expresses that along the path starting from the current state there
exists a state in which ψ holds and φ holds in every state before. The
special case where φ equals tt (true) thus stands for the property that
there exists a reachable state where ψ holds; this is sometimes denoted
Fψ (“eventually ψ”). The dual of that is denoted Gψ (“globally ψ”) and
it holds if ψ is true in every state along the path starting from the current
state.

Quantification. Special attention must be given to the temporal expression
involving existential (and, by duality, universal) quantification. The formula
∃x ∈ τ : φ expresses that φ must hold for at least one alive instance x of the type
τ . By convention, for the universes of values given by Valvoid, Valnat, Valbool,
we assume their elements to be all alive in every state of the computation. This
is justified since they describe static sets of values. Note that Valτ is infinite
for some τ ∈ Type.

The situation is different for the special domains ValC ref and ValC.M ref .
Although by definition they are infinite, in a particular state of the computation
there is only a finite subset of their elements that have been created, i.e., that are
alive. Because of object creation and method invocation, from state to state
new instances may be created and destroyed, making therefore the subsets
of alive instances of ValC ref and ValC.M ref dynamic. Thus, if we consider
the overall computation, the set of alive objects and method invocations may
become unbounded. This implies that model checking of universally quantified
formulae is impossible if we rely on standard techniques. For example, consider
the formula:

G[∀x ∈ τ : φ].

If the alive elements in Valτ grow infinitely often, then, since indeed the state
space becomes infinite in order to use exhaustive state space exploration, it
is necessary to design sound abstractions able to keep the state space finite.
In Chapters 4 and 5, — along the lines of HD-automata2 — we will see how
the use of local identities for objects and method occurrences helps to alleviate
the problem. Furthermore, we will introduce two abstractions and study the
consequences from the model checking point of view3.

Abbreviations. In examples, we often omit the type τ when it is clear from
the context. Moreover, for ξ denoting an element of C ref or C.M ref we use the
abbreviations in Table 3.1. The predicates ξ dead and ξ old are very useful and
they will be used extensively throughout the dissertation. The last abbreviation
is convenient for quantify over alive method occurrences of a given alive object.

2See Section 2.2.
3For the sake of completeness, abstractions must be applied also to Valnat. However,

for this domain, it is customary to restrict quantification to bounded cases; for instance, all
integers smaller than a given upper bound.

3.2 Syntax of BOTL 43

φ⇒ ψ for ¬φ ∨ ψ
φ ∧ ψ for ¬(¬φ ∨ ¬ψ)
φ⇔ ψ for (φ⇒ ψ) ∧ (ψ ⇒ φ)
ξ dead for ¬(ξ alive)
ξ old for (ξ alive) ∧ ¬(ξ new)
∀x ∈ τ : φ for ¬∃x ∈ τ : ¬φ
∃x 6= ξ : φ for ∃x : (x 6= ξ)⇒ φ
∃x ∈ ξ.M ref : φ for ∃x ∈ C.M ref : (x.owner = ξ)⇒ φ

Table 3.1: BOTL abbreviations.

Along the computation of the hotel h, eventually at least one guest will check in:

F[∃m ∈ h.checkIn ref : m alive]

Guests of hotel h are not hosted forever:

G[∀x ∈ Guest : includes(h.guests , x) ⇒ F[¬includes(h.guests , x)]]

The hotel is never completely empty:

G[size(h.guests) > 0]

A guest cannot be hosted in more than one room:

G[∀x ∈ Guest : ∃y ∈ Room ref : ∃z ∈ Room ref :
includes(y.guests , x) ∧ includes(z.guests , x) ⇒ y = z].

A guest cannot be checked in and out at the same time:

G[∀x ∈ Guest : ∃m1 ∈ h.checkIn ref :
m1.g = x ⇒ ¬∃m2 ∈ h.checkOut ref : m2.g = x)]

A guest cannot be checked in more than once unless he has been checked out:

G[∀x ∈ Guest : ∃m1 ∈ h.checkIn ref : m1.g = x⇒
(¬∃m2 ∈ h.checkIn ref : m1 6= m2 ∧m2.g = x)U

(∃m3 ∈ h.checkOut ref : m3.g = x)]

The check-out procedure of a guest cannot start until
the check-in procedure has been completed:

G[∀x ∈ Guest : ∃m1 ∈ h.checkIn ref :
m1.g = x ⇒ (¬∃m2 ∈ h.checkOut ref : m2.g = x)Um1 dead].

Table 3.2: Some BOTL example properties.

Example 3.2.2. Table 3.2 reports some example properties expressible in
BOTL. The boolean list operator includes(l, e) is true if and only if the element
e belongs to the list l; the operator size(l) returns the cardinality of l.

44 Chapter 3 – A logic for object-based systems

CTL or LTL? As we have seen, for the specification of the temporal aspects,
BOTL is based on the linear temporal logic LTL. A fair question would be why
we have chosen LTL instead of another temporal logic as for example CTL.
As a matter of fact, for the definition of BOTL there is no special reason
to prefer one of these logics over the other. And in fact, we have designed
BOTL with the intention to make the object-based ingredients as orthogonal
as possible to the temporal aspects. This means that BOTL can be adapted, in
a straightforward manner, not only to CTL — as we have done in the original
definition of BOTL [42] — but even to other (more expressive) temporal logics
like CTL∗ or µ-calculus. An approach for the latter case as been investigated
by [13].

3.3 Semantics of BOTL

3.3.1 BOTL operational models

In the design of BOTL we have concentrated on the essential features of an
object-based system. By this we mean that the logic can only address features,
such as object attributes, that are likely to be available in any reasonable be-
havioural model of an object system. Accordingly, we will define the semantics
of BOTL using an operational model that is as “poor” as possible, i.e., includes
those features addressable by the logic but no more than those. In this chap-
ter, we do not go into the question how such a model is to be generated. For
instance, the degree of parallelism or the way of method invocation is part of
the translation of an object-oriented language to the model. Any richer kind
of model can be abstracted to a BOTL model; thus, hopefully, the logic can
be used to express properties of behaviour models generated by a wide range
of formalisms. Later, in Section 4.4 and Section 5.6, we will study how models
can be created from two simple imperative languages that include some essen-
tials features of object-based languages such as object creation and a simplified
version of navigation.

We first need to give the notions of classes, methods and variables more
substance. Consider the following partial functions:

VDecl = VName ⇀ Type

MDecl = MName ⇀ VDecl×Type

CDecl = CName ⇀ VDecl×MDecl

A variable declaration in VDecl is a partial function mapping variable names
to the corresponding (image) types. MDecl does the same for method names,
taking into account that these are actually functions with formal parameters
and a return value. Finally, each D ∈ CDecl is a class declaration mapping
class names to the corresponding attribute and method declarations.

Let us assume the class declaration D ∈ CDecl to be given. For any
class C ∈ dom(D), we denote C.attrs (∈ VDecl) for its attribute declara-

3.3 Semantics of BOTL 45

Hotel.attrs(v) =

nat if v ∈ {numOfFloors ,
numOfRooms}

Room list if v = rooms
Guest list if v = guests
⊥ otherwise

Room.attrs(v) =

nat if v ∈ {floorNumber ,
roomNumber ,numOfBeds}

Hotel if v = hotel
Guest list if v = guests
⊥ otherwise

Guest.attrs(v) =

nat if v ∈ {guestCode , age,
numOfNights}

Hotel if v = hotel
Room if v = room
⊥ otherwise

checkIn .fpars(v) =

{
Guest if v = g
⊥ otherwise

checkOut .fpars(v) = checkIn .fpars(v)

Hotel.meths(M) =

(checkIn .fpars , void) if M = checkIn
(checkOut .fpars , void) if M = checkOut
⊥ otherwise

Room.meths(M) = ⊥

Guest.meths(M) = ⊥

Table 3.3: Class definition D ∈ CDecl for the Hotel example.

tion function, and C.meths (∈ MDecl) for its method declaration function;
thus, D(C) = (C.attrs , C.meths). Furthermore, if the class C of a method
M is clear from the context then we use M.fpars (∈ VDecl) to denote the
formal parameters of M and M.retty (∈ Type) for the return type; hence
C.meths(M) = (M.fpars ,M.retty).

Example 3.3.1. For the Hotel model of Figure 2.3, the class definition D ∈
CDecl is contained in Table 3.3 where v ∈ VName, M ∈ MName and C ∈
CName.

BOTL operational models are generalised Büchi automata4, i.e., tuples
MD = 〈Conf ,−→, I,F〉 where Conf is the set of configurations (or states)

4In the original definition of BOTL given in [42], we used Kripke structures. This mod-

46 Chapter 3 – A logic for object-based systems

over which −→ ⊆ Conf × Conf defines a transition relation, I ⊆ Conf is the
(non-empty) set of initial states and F ⊆ 2Conf is the set of accept states5. The
components Σ and L representing the alphabet and the interpretation of the
atomic propositions are not explicitly represented in the model because they
are not relevant for the interpretation of the logic. In fact, in BOTL the atomic
propositions would correspond to SBOTL and their interpretation in a state will
be given by the definition of their semantics in Section 3.3.2. D ∈ CDecl is
the global class declaration, whereas the elements of Conf are tuples of the
form (O,E, ς, γ) where:

• O ⊆ OId;

• E ⊆ Evt;

• ς : O → VName ⇀ Val;

• γ : E → (VName ⇀ Val)×Val⊥.

We discuss these elements briefly:

• O describes the objects currently alive in the state.

• E describes the method occurrences currently alive (active).

• For each alive object o ∈ O, ς(o) denotes the local state of o, i.e., it
records the values of the attributes of o. ς has to be consistent with D
in the sense that ς(o) = ` with o ∈ OIdC implies dom(`) = dom(C.attrs)

and `(a) ∈ ValC.attrs(a) for all a ∈ dom(`).

ς is extended point-wise to lists of objects; thus ς([])(a) = [] and ς(h ::
w)(a) = ς(h)(a) :: ς(w)(a).

• The images of γ consist of a (partial) mapping of variable names to values,
representing the valuation of the formal parameters of the method invo-
cation, as well as the value returned by the method. The latter is defined
when the method has terminated; otherwise the value can be ⊥. γ has
to be consistent with D: if γ(ζ) = (`, v) for a given method occurrence

ζ ∈ EvtC,M then dom(`) = dom(M.fpars) and `(p) ∈ ValM.fpars(p) for

all p ∈ dom(`), and v ∈ ValM.retty
⊥ .

Assumptions. The transition relation −→ satisfies the following property
regarding the termination of method invocations: if an active method occur-
rence ζ becomes inactive then it has a well-defined return value (i.e., not ⊥).
Formally: if (O,E, ς, γ) −→ (O′, E′, ς ′, γ′) then:

ζ ∈ E \E′ ⇒ ∃v ∈ Val : γ(ζ) = (`, v).

ification is not at all critical since —as we have seen in Section 2.1.1— there exists a tight
correspondence between the two kind of models. Here the choice of Büchi automata is only
driven by consistency reasons with subsequent chapters of the dissertation.

5See Section 2.1.1 for an introduction to Büchi automata.

3.3 Semantics of BOTL 47

25

3

g2 : Guest

numOfNights

age

guestCode 72

29

3

g3 : Guest

numOfNights

age

guestCode 53

31

5

g4 : Guest

numOfNights

guestCode 46

71

r2 : Room

floorNumber

roomNumber

numOfBeds

3

2

numOfFloors

h : Hotel

numOfRooms

floorNumber

roomNumber

numOfBeds

27

2

3

11

3

5

g1 : Guest

numOfNights

age

guestCode

age

g5 : Guest

numOfNights

7

23

51guestCode

age

numOfNights

g6 : Guest

guestCode

30

4

69

r1 : Room

⊥return

g

age

r3 : Room

roomNumber

3

21

13

5floorNumber

1numOfBeds
(h, checkIn, 1)

Figure 3.1: A possible configuration of the Hotel model.

Intuitively, we say that a method has terminated in the current state if it
is deallocated in the next state. However, we assume that at the moment of
termination the return value is defined. This might be because of the execution
of a return statement (as in Java for example). Furthermore, we assume that
Conf contains no terminated or deadlocked configurations; i.e., there is at least
one outgoing transition from every element of Conf . (This property is imposed
only for the sake of simplifying the definitions later on; it can be satisfied easily
by adding a self-loop to every deadlocking configuration.)

Example 3.3.2. Figure 3.1 depicts a possible configuration of the Hotel model.
In particular we have:

O = {h, r1, r2, r3, g1, g2, g3, g4, g5, g6}

E = {(h, checkIn, 1)}

where we have adopted the following abbreviation: h=(Hotel, 1), gi=(Guest, i)
and ri = (Room, i) for i ∈ N. The objects show the values of the components
ς and γ. For example, for object g6 we have:

ς(g6)(guestCode) = 51

ς(g6)(age) = 23

ς(g6)(numOfNights) = 7

For the other objects, ς can be obtained in a similar way. The γ component
for the only active method is γ(h, checkIn, 1) = (g 7→ g6, ⊥).

48 Chapter 3 – A logic for object-based systems

3.3.2 Semantics of BOTL static expressions

We are now in a position to define the semantics of our logic. We assume the
class declaration D to be fixed and given. Let Θ = LVar ⇀ Val, ranged over
by θ, be the set of maps that assign values to (some of) the logical variables.

The semantics of expressions is given by the function

[[]] : SBOTL → (Conf × 2OId∪Evt ×Θ)→ Val⊥.

Let q = (Oq , Eq , ςq , γq) be a configuration of MD and N ⊆ (Oq ∪ Eq) rep-
resenting the set of new object and method occurrences in the configuration.
Then:

[[x]]q,N,θ = θ(x)

[[ξ.a]]q,N,θ = `(a) where [[ξ]]q,N,θ ∈ C ref and ςq([[ξ]]q,N,θ)=`

or [[ξ]]q,N,θ ∈ C.M ref and γq([[ξ]]q,N,θ)=(`, v)

= ~̀(a) where [[ξ]]q,N,θ∈C ref list and ςq([[ξ]]q,N,θ)=
~̀

or [[ξ]]q,N,θ∈C.M ref list and γq([[ξ]]q,N,θ)=(~̀, ~v)

[[ξ.owner]]q,N,θ = o where [[ξ]]q,N,θ = (o,M, j)

[[ξ.return]]q,N,θ = v where γq([[ξ]]q,N,θ) = (`, v)

[[ξ new]]q,N,θ = ([[ξ]]q,N,θ ∈ N)

[[ξ alive]]q,N,θ = ([[ξ]]q,N,θ ∈ Oq ∪ Eq)

[[ω(ξ1, . . . , ξn)]]q,N,θ = [[ω]]([[ξ1]]q,N,θ, . . . , [[ξn]]q,N,θ)

[[with x1 ∈ ξ1 from x2 := ξ2 do x2 := ξ3]]q,N,θ
= [[for x1 ∈ [[ξ1]]q,N,θ do x2 := ξ3]]q,N,θ{[[ξ2]]q,N,θ/x2}

where [[for x1 ∈ [] do x2 := ξ]]q,N,θ
= [[x2]]q,N,θ

[[for x1 ∈ h :: w do x2 := ξ]]q,N,θ
= [[for x1 ∈ w do x2 := ξ]]q,N,θ{[[ξ]]q,N,θ{h/x1}/x2}

The semantics of a variable x corresponds to its interpretation θ. The semantics
of a navigation expression ξ.a is the value of the function ` (cf. page 46) in the
attribute a of the object denoted by ξ. If ξ is a method, then ` corresponds
to the value of the formal parameter a at the moment of the method call. In
case ξ denotes a list of references to objects or method calls, the definition is
extended point-wise. The semantics of the formula ξ.owner (where ξ represents
a method occurrence) is simply the object executing the method. The semantics
of ξ.return is the return value stored in the component γ of the method instance
denoted by ξ. ξ new is true if the object or method call denoted by ξ belongs to
the set N of new objects and method calls in the current configuration. ξ alive
is true if and only if the object or method invocation denoted by ξ is indeed

3.3 Semantics of BOTL 49

among the object and method instances present in the current state. The
semantics of an operation ω(ξ1, . . . , ξn) is given by the operation [[ω]] applied
to the interpretation of its parameter ξ1, . . . , ξn in the current configuration.
Finally, the “with-from-do”-expression is evaluated by means of the “for-do”
meta-expression, which successively re-computes the “do”-expression for every
value of x1 out of the “for”-list.6

Example 3.3.3. Consider the object diagram in Figure 3.1, and suppose we
want to evaluate x.rooms .guests in the configuration q = (O,E, ς, γ) with vari-
able interpretation θ : x 7→ h and N = ∅. Skipping some details, we obtain:

[[x.rooms .guests]]q,N,θ = ς([[x.rooms]]q,N,θ)(guests)

= ς(ς([[x]]q,N,θ)(rooms))(guests)

= ς(ς(h)(rooms))(guests)

= ς([r1, r2, r3])(guests)

= [[g1, g2], [g3, g4, g5], []] .

As expected, the result is a list of lists.

3.3.3 Semantics of BOTL temporal formulae

The semantics of BOTL formulae is now rather straightforward. It is defined
by a satisfaction relation between an accepting run of the model MD defined
by the transition system, a set of new objects and method occurrences N , a
valuation θ and a formula φ. To define it, we recall some notation and in par-
ticular Definition 2.1.2 of path through a transition model and Definition 2.1.6
of accepting run for Büchi automaton. An accepting run is simply a path satis-
fying a fairness condition on the accept states. LetMD = 〈Conf ,−→, I,F〉. For
a path of configurations η ∈ Conf ω we denote by η[i] the (i+1)-th state and we
write ηi for the suffix of η starting at state η[i], i.e., ηi = η[i]η[i+1]η[1+2] · · · .
Moreover, we denote Inf (η) the set of configurations in η that occur infinitely
often and we indicate by (Oηi , E

η
i , ς

η
i , γ

η
i) the single components of configuration

η[i]. Formally, a run of MD is an infinite path of configurations η ∈ Conf ω

such that η[0] ∈ I and Inf (η) ∩ F 6= ∅ for all F ∈ F .
The set Nη

i of new objects and method occurrences at state i > 0 of η is
defined as

Nη
0 = N ⊆ (Oη0 ∪ E

η
0)

Nη
i+1 = (Oηi+1\O

η
i) ∪ (Eηi+1\E

η
i).

where N is the set of initial new objects and new method occurrences assumed

6For the reader familiar with functional programming: with x1 ∈ ξ1 from x2 := ξ2 do x2 :=
ξ3 may alternatively be translated to foldl [[ξ1]]q,N,θ [[ξ2]]q,N,θ λ v h.[[ξ3]]q,N,θ{h/x1,v/x2}

.

50 Chapter 3 – A logic for object-based systems

to be given7. Similarly, given θ ∈ Θ, let θηi ∈ Θ denote the valuation of the
logical variables in configuration i. This valuation must be undefined for the
variables that θ maps outside the alive objects and method occurrences in
configuration i.

θηi (x) =

{
θ(x) if ∀k 6 i : θ(x) ∈ Oηk ∪ E

η
k

undefined otherwise.

We need the following auxiliary notation. Let Valτ � (O,E) denote the subset
of Valτ alive w.r.t. the sets O and E of alive objects and method occurrences.
It is defined as:

Valτ � (O,E) =

Valτ ∩ O if τ = C ref
Valτ ∩ E if τ = C.M ref
Valτ otherwise.

Intuitively if τ 6= C ref or τ 6= C.M ref then, by definition, the alive values
are precisely all the elements of Valτ . Otherwise, in case of object references
we have to restrict only to the subset of O of type τ . Similarly for method
occurrences.

The semantics of temporal formulae is now given by a relation |= ⊆(Conf ω×
(OId ∪Evt)×Θ)×TBOTL. Let η be an accepting run of MD, N ⊆ Oη0 ∪E

η
0 ,

and θ ∈ Θ then

η,N, θ |= ξ iff [[ξ]]η[0],N,θ = tt

η,N, θ |= ¬φ iff η,N, θ 2 φ

η,N, θ |= φ ∨ ψ iff either (η,N, θ |= φ) or (η,N, θ |= ψ)

η,N, θ |= ∃x ∈ τ : φ iff ∃v ∈ Valτ � (Oη0 , E
η
0) : η,N, θ{v/x} |= φ

η,N, θ |= Xφ iff η1, Nη
1 , θ

η
1 |= φ

η,N, θ |= φUψ iff ∃j > 0:
(ηj , Nη

j , θ
η
j |= ψ and ∀0 6 k < j : ηk, Nη

k , θ
η
k |= φ)

Most of the temporal operators have standard semantics (cf. the definition of
semantics of LTL in Section 2.1.2). Note that in the existential quantification,
the variable x is bound only to alive values in the current state.

3.4 Object Constraint Language

The notation given by UML is mainly based on diagrams. Although this visual
nature has provided the UML with a widespread popularity among practition-
ers, sometimes diagrams do not give the right level of expressiveness needed. In

7N will usually depend on the particular specialisation of the BOTL operational model.
For example, in some cases it could be reasonable to consider every object and method
occurrence present in the initial state to be new. For other models, it could be reasonable to
consider only a proper subset of Oη0 ∪ Eη0 .

3.4 Object Constraint Language 51

many situations, using a textual language can help to formulate concise specifi-
cations. The Object Constraint Language (OCL) [88, 110, 111] is a part of the
UML that provides a framework to add textual annotation to UML diagrams.
More specifically, the important class of annotations covered by OCL is given
by constraints, i.e., statements that impose additional restrictions on the UML
model. There are two kinds of constraints in OCL:

• invariants, i.e., statements that should be valid at any point in the com-
putation;

• pre- and postconditions, i.e., statements about the start and end of a
method execution.

In the following section, we describe some of the basic concepts proper of OCL,
later in Section 3.4.2 we give a formal syntax of (a subset of) OCL.

3.4.1 An informal and concise summary of OCL basic concepts

The content of this subsection is mostly based on [95, 110].

Types. OCL is a typed language. Its types can be grouped in

• predefined types and

• model types.

The first group is composed of basic types such as Integer , Real , String , Boolean
and collection types, that is Collection(T), Set(T), Bag(T) and Sequence(T).
The parameter T ranges over types, thus, for example, we have Bag(Integer)
for a multi-set of integers. Each of the predefined types has a set of standard
operations defined. For example:

• +,−, ∗, / for Integer and Real ;

• and, or, not for Boolean ;

• union, intersection, includes (i.e., membership test) for Set and Bag ;

• concatenation for String and so on.

Among the predefined types there is also the special types OclAny .
Model types are all those defined in the UML model. For example, in the

Hotel class diagram in Figure 2.3 these are: types Hotel, Guest and Room.
The set of OCL types is organised in a hierarchy depicted in Figure 3.2 where

special types for the meta-model are not included. For example, Collection is a
super type of Set , Bag and Sequence. Apart from Collection , all other types are
subtypes of OclAny . We will not be concerned with issues related to sub-typing
in this thesis.

52 Chapter 3 – A logic for object-based systems

〈ModelElement〉Real

OclAny

Integer

Boolean String Enumeration Bag(T) Sequence(T)Set(T)

Collection(T)

Figure 3.2: OCL types hierarchy

Expressions and constraints. Expressions are built out of literals, identi-
fiers and variables. Each OCL expression has a type and a result. The type
of the result is the type of the expression. For example, the expression 3 + 4
has result 7 and type Integer . An expression yields an undefined value if one
of its operands is undefined. OCL expressions may use navigation expressions
in similar way as BOTL. Constraints in OCL are built on the basis of OCL
expressions and have a boolean type. Moreover, constraints have a context
that changes depending on their kind. For invariants, the context is given by
a class. The following OCL invariant:

context Room invariant

guests→size ≤ numOfBeds

states that the number of guests in a room cannot exceed the number of beds
in the room.

Pre- and postconditions have a method and a class as context. They define
a contract that an implementation of the method must fulfil [81]. Thus, pre-
and postconditions specify necessary requirements that must be satisfied to
consider the implementation of a method to some extent correct. For instance,
in

context Hotel :: checkIn(g : Guest)
pre not guests→includes(g)
post guests→size = (guests@pre→size) + 1 and guests→includes(g)

the precondition states that the person to be checked in is not a current guest
of the hotel, while the postcondition states that after checking him/her in, the
number of guests has increased by one and the new guest is one of the current
guests. The @pre-operator refers to the number of guests at the beginning
of the check-in. The standard OCL operation size determines the number of
elements of a collection. Note that invariants as well as pre- and postconditions
are safety properties, whereas BOTL also allows to express liveness properties
such as the first one in Example 3.2.2.

3.4 Object Constraint Language 53

3.4.2 OCL syntax

The set of OCL constraints and OCL expressions is given by the following
grammar:

(χ ∈)COCL ::= context C invariant ξ | context C :: M(~p) pre ξ post ξ

(ξ ∈)SOCL ::= self | z | result | ξ@pre | ξ.a | ω(ξ, . . . , ξ)

| ξ.ω(ξ, . . . , ξ) | ξ→ω(ξ, . . . , ξ) | ξ→iterate(x1;x2 =ξ |ξ)

As for BOTL we assume that OCL terms are type correct (with, however some
differences in the possible types; see below). At the top level, a constraint χ
can either be an invariant or a pre- and postcondition (see Section 3.4.1). As
discussed before, the context of a constraint is a class C in case of an invariant
or a class and a method M ∈ dom(C.meths) in case of pre- and postconditions.
The context can be referred to by the expression in the constraint. For instance,
in an OCL navigation expression self.a, we describe a route starting from an
object of the context class C.

Many of the expressions ξ ∈ SOCL have their direct counterpart in BOTL.

• self refers to the context object of the class C.

• z represents either an attribute of the context object, or a formal param-
eter of the context method, or a logical variable.

• result refers to the value returned by the context method.

• @pre is a suffix that refers to the value of its operand at the time of the
method invocation. Both result and @pre may be used in postcondi-
tions only (see below).

• ξ.a and ω(ξ1, . . . , ξn) are the same as for BOTL, i.e., they express navi-
gations and ω operations on types.

• ξ.ω(ξ1, . . . , ξn) represents an operator ω on basic types that is applied to
ξ, ξ1, . . . , ξn. If the expression ξ is a collection (i.e., a set, bag or list), we
have the special case ξ→ω(ξ1, . . . , ξn).

• ξ1→iterate(x1;x2 = ξ2 | ξ3) has the same meaning as with x1 ∈
ξ1 from x2 := ξ2 do x2 := ξ3. The difference is only in the type that
can be returned, namely sets and bags (see Section 3.5.1). A large group
of OCL queries (e.g., exists, forAll, select, reject, collect) can be
reduced to iterate expressions (and therefore to with-from-do expressions)
[24, 97, 110].

Particular OCL features not included in the previous syntax are expressions
of the kind M(ξ, . . . , ξ) and ξ.M(ξ, . . . , ξ) where M is a so-called query method;
i.e., M is a method which returns a value without side effects. Nevertheless,
also constraints where query methods appear can be translated in terms of

54 Chapter 3 – A logic for object-based systems

another OCL expression that does not contain them but that describes the
function implemented by the query method8. Thus, as in other related works
[56, 96], we do not treat query methods explicitly.

Example 3.4.1. The OCL invariant:

context Guest invariant

age > 18

says that every guest of the hotel must be at least 18 years old. In BOTL, this
has a straightforward translation: G[∀x ∈ Guest ref : x.age > 18].

Example 3.4.2. As a more involved example, consider the following OCL
invariant:

context Hotel invariant
rooms.guests = guests

states that the collection of guests in the rooms of the hotel should be consistent
with the collection of guests maintained at the hotel. Clearly, this statement
is not valid in every state of the system as, for instance, its validity cannot be
guaranteed while executing a method that changes the number of guests (like
checking a guest in or out). In BOTL, the same property would be expressed
by

G[∀x ∈ Hotel ref : (¬∃m ∈ x.checkIn ref : tt ∧ ¬∃m′ ∈ x.checkOut ref : tt)
⇒ sort(flat(x.rooms .guests)) = sort(x.guests)].

The function flat (defined in Section 3.2.1) flattens nested lists; we need it
because x.rooms .guests is a list of lists, whereas x.guests is a simple list. The
function sort orders lists. Note that requiring the absence of occurrences m,m′

of the methods checkIn and checkOut is essential: during the execution of a
checkIn and checkOut , it is not possible to guarantee the validity of the invari-
ant since these methods change the number of guests. The same observation
would apply to any other method that could modify the state.

3.4.3 Some OCL restrictions

OCL should allow to specify constraints on UML models in a formal way.
However, as pointed out by several authors in the literature [31, 53, 55], in its
early stages, OCL contained a number of ambiguities as well as inconsistencies,
mostly due to the lack of a mathematical foundation. These restrictions hardly
made OCL a truly formal language. Lately more attention has been given on
its mathematical foundation9. It has become clear that, by a rigorous formali-
sation, OCL would gain the necessary precision needed to correctly formulate

8Provided the function is not defined recursively.
9As testified also by the Revised Submission 1.5 of OCL 2.0 suggested for the “UML 2.0

Request for Proposals for OCL” of the OMG that contains a section on the formal semantics
of OCL taken mostly from [95].

3.4 Object Constraint Language 55

constraints on UML models. As a direct consequence, it would become possible
to design software tools supporting this constraint language. Following differ-
ent approaches (see Section 3.6.2), several attempts that aim to provide OCL
with a formal foundation have been carried out. In Section 3.5, we present our
proposal that consists of a translation from a large subset of OCL into BOTL.

Following [95], we give a few example concepts known in the literature that
are not defined satisfactorily in OCL.

Flattening. The definition of OCL does not allow nested collection types as,
for example:

Set(Set(Integer)).

The OCL specification prescribes that in case of nested collections the result
type is “automatically flattened”. However, how the flattening should be done
is defined only by means of an naive example (see [89], Chapter 7, pp.7-20):

Set{Set{1, 2},Set{3, 4},Set{5, 6}} = Set{1, 2, 3, 4, 5, 6}.

Indeed, this instance works perfectly. Nevertheless, it is not difficult to con-
struct other examples where in fact this is not the case anymore. Let g1, g2,
g3 be of type Guest and consider the expression:

Sequence{Set{g1, g2, g3}}

that may be obtained by navigating from Hotel, via Room to the class Guest10.
In this case, the flattening does not work anymore since the result depends on
the order of the elements in Set{g1, g2, g3}. By definition, the elements of a set
are not ordered, therefore, any of the following results is acceptable:

Sequence{g1, g2, g3} or Sequence{g1, g3, g2} or
Sequence{g2, g1, g3} or Sequence{g2, g3, g1} or
Sequence{g3, g2, g1} or Sequence{g3, g1, g2}.

In order to make the flattening deterministic it seems unavoidable to impose
an order on the elements of sets. In Section 3.5, we will propose a possible
solution to this problem.

Iterate expression. The OCL expression iterate provides a rather pow-
erful iteration mechanism on collections since many of the expressions on col-
lections can be stated in terms of it. However, the evaluation of the iterate
expression may be problematic. In fact, the result is not always well defined,
meaning that there can be different result for the same input, or in other words,
it may behave nondeterministically. Once again this happens when the whole
iteration depends on the order in which the elements of the collection are cho-
sen [96, 97]. Hence, when the iteration is done on collections like Set or Bag .

10Assuming that in the association rooms of the class Hotel there would be the keyword
{ordered} that yields a sequence instead of a set.

56 Chapter 3 – A logic for object-based systems

As an example, assume the class Guest of our running example would have an
attribute name of type String . Then, consider the following OCL operation
that returns the concatenation of the guest names:

h.guests→iterate(x1;x2 =′ ′ | x2.concat(x1.name)).

Clearly, if h.guests is a set or a bag then there will be more than one result for
this expression according to the order in which elements of h.guests are bound
to x1. Similarly, consider the following OCL expression:

{1, 2, 4}→iterate(x1;x2 = 0 | −x2 + x1).

Again, the result will be either -1, or 3, or 5 according to the order in which
element of {1, 2, 4} are bound to x1.

For a discussion on other OCL restrictions (e.g. concerning type issues) the
reader is referred to [25] where a list of resolved issues is also provided.

3.5 Translating OCL into BOTL

In this section, we will give a translation of OCL into BOTL and investigate
differences as well as relations between these two languages. First note that
BOTL is not primarily intended to be the exact formal counterpart of OCL.
In defining BOTL we were concerned with some issues derived mostly from
our aim to do model checking of object-based programs. On the other hand,
our logic can be seen as one of the many approaches on how to give a sound
foundation to OCL. At the same time, the translation provides us with a good
insight in the expressiveness of BOTL.

3.5.1 Translation issues

Before proceeding with the formal translation of OCL into BOTL, let us give
the intuition, in a rather informal way, of the solutions to the issues involved.

Data types. One of the differences between BOTL and OCL is their type
system: rather than arbitrary lists, OCL allows sets, bags and lists of primitive
data values; i.e., nested lists are not included11. There are two reasons why
BOTL considers only arbitrary lists. On the one side, lists have sufficient
expressive power to represent sets and bags; on the other side, by using only lists
we avoid the problem of nondeterministic behaviour in the BOTL expression
with-do-from. As we have seen in Section 3.4.3 this problem is present in OCL.
Note that by only using lists the problem described in the examples of that
section would not occur.

11However, at this moment, it seems that in the Revised Submission version 1.5 of OCL
2.0 the contributors advocate for the use of nested collection types.

3.5 Translating OCL into BOTL 57

In order to have a more rigorous comparison, let us define OCL types. Then
we will show how to encode them using BOTL types. For simplicity, we omit
strings, reals and enumerations which are absent in BOTL but could be added
without essential problems. OCL types are defined by:

ρ ::= nat | bool | C ref

τ(∈ TypeOCL) ::= ρ | ρ list | ρ set | ρ bag

ρ set are sets of elements of type ρ, while ρ bag are multi-sets whose elements
have type ρ. The semantics of the sorts included in Type is unchanged, while
for the new types we have the following value domains:

Valρ set = 2Valρ

Valρ bag = Valρ → N.

The set of values in OCL is:

ValOCL =
⋃

τ∈TypeOCL

Valτ .

Now let us discuss how we will translate OCL operations on sets and bags, say
ξ1→ω(ξ2, . . . , ξn). For OCL types ρ set and ρ bag, we define functions αset and
αbag on BOTL values. These functions abstract from the order of the elements
in a list and return a set or a bag, respectively. Formally αset : Val→ ValOCL

is given by:

αset(v) =

∅ if v = []
{h} ∪ αset(w) if v = h :: w
v otherwise.

Using {| · |} as notation for bags and] for their union, αbag : Val→ ValOCL is
given by

αbag(v) =

{||} if v = []
{|h|}] αbag(w) if v = h :: w
v otherwise.

For each operation ξ1→ω(ξ2, . . . , ξn) on sets or bags, there exists a correspond-
ing operation in BOTL, say ω̄(ξ1, ξ2, . . . , ξn), such that the diagram in Fig-
ure 3.3 commutes.

Example 3.5.1. Consider the OCL expression ξ1→union(ξ2). The intended
semantics [[union]] is the mathematical union on sets. In BOTL, there will be
an appropriate operator with semantics [[union]] :Valτ list×Valτ list →Valτ list.
According to the commutative diagram, we have that

αset([[union(v1, v2)]]) = [[union]](αset(v1), αset(v2)).

That is, the result on lists is equal, up to abstraction from sets, to the cor-
responding union on sets. The operator union can be defined for instance as
union(w1,w2), concat(w1, w2) where w1 and w2 are lists.

58 Chapter 3 – A logic for object-based systems

Val

ValOCLValnOCL

α

[[ω̄]]

[[ω]]

α

Valn

Figure 3.3: Commutative diagram.

Example 3.5.2. Consider now equality on sets in OCL: ξ1 = ξ2 where ξ1
and ξ2 have type set. The corresponding BOTL expression will have semantics
[[=̄set]] : Valτ list ×Valτ list → Valbool. The operator =̄set is defined as follow:

=̄set(w1, w2) , EqList(sort(del duplicates(w1)), sort(del duplicates(w2))).

The function EqList takes two sorted lists and returns true if they have the
same elements, and false otherwise. The function del duplicates deletes the
duplicate elements in a list. Apart from del duplicates , the same argument
applies to bags.

Invariants. The key issue for the translation of context C invariant ξ,
concerns the identification of the states in which the invariant expression ξ
has to hold. In particular we have to ensure that none of the methods in
dom(C.meths) is active. In fact, during the execution of methods, there can be
some intermediate configurations in which ξ does not hold (see Example 3.5.4).

Pre- and postconditions. The translation of pre- and postconditions is
more involved. In particular, the OCL operator @pre has to be handled in a
special way as it forces us to consider two different moments in time, viz. the
start and end of a method invocation. We use the following strategy. Consider
the constraint: context C :: M(~p) pre ξpre post ξpost . By definition, ξ@pre

subexpressions occur a finite number of times, say n ≥ 0, only in ξpost . We
first enumerate all the occurrences of ξ@pre subexpressions in ξpost . We write
ξ@ipre for 1 ≤ i ≤ n. Then when we translate ξpost , by means of the function
δ that we will define in the next subsection, we substitute terms ξ@ipre with
new fresh logical variables ui ∈ τi for 1 ≤ i ≤ n. The value of the variable
ui is bound to the appropriate value in the translation of ξpre . We “add” to
the translated precondition δ(ξpre) a binding term ui = δ(ξ) for all ui and
ξ@ipre. Thus, the variables ui are associated to the value of ξ in ξ@ipre at
the beginning of the method execution, and therefore can be used instead of
ξ@ipre in the postcondition. Note that the judgement ui ∈ τi can be inferred
by the type of ξ in ξ@ipre.

3.5 Translating OCL into BOTL 59

3.5.2 Translating OCL expressions into BOTL

We will now define a syntactic mapping of OCL into BOTL. First we will give
a partial function δ that maps OCL expressions onto BOTL static expressions.
Then by means of δ we will address the issues involved in the translation of
OCL constraints. The function δ takes three parameters: o, m, ~p. Given
χ ∈ COCL, the first parameter o represents a variable bound to an object of the
context class C. In case of pre- and postconditions, the value of parameter m
is a method occurrence of the context method M and ~p is the list of its formal
parameters. In case of invariants, m has an arbitrary value whereas ~p is the
empty list. The translation function δ : SOCL ⇀ (LVar×LVar×VName∗)→
SBOTL is given by:

δo,m,~p(self) = o

δo,m,~p(x) =

o.x if o ∈ C ref and x ∈ dom(C.attrs)
m.x if x ∈ ~p
x otherwise

δo,m,~p(result) = m.return

δo,m,~p(ξ@ipre) = ui

δo,m,~p(ξ.a)=

{
flat(δo,m,~p(ξ).a) if ξ∈C ref list and C.attrs(a)=τ list
δo,m,~p(ξ).a otherwise

δo,m,~p(ω(ξ1, . . . , ξn)) = ω̄(δo,m,~p(ξ1), . . . , δo,m,~p(ξn))

δo,m,~p(ξ.ω(ξ1, . . . , ξn)) = ω̄(δo,m,~p(ξ), δo,m,~p(ξ1), . . . , δo,m,~p(ξn))

δo,m,~p(ξ→ω(ξ1, . . . , ξn)) = ω̄(δo,m,~p(ξ), δo,m,~p(ξ1), . . . , δo,m,~p(ξn))

δo,m,~p(ξ1→iterate(x1;x2 = ξ2 | ξ3)) =

with x1 ∈ δo,m,~p(ξ1) from x2 := δo,m,~p(ξ2) do x2 := δo,m,~p(ξ3) .

The translation of SOCL is straightforward for almost every operator.

• A variable x is prefixed by the context object if it is one of its attributes;
it is prefixed by m if it is among m’s formal parameters.

• As discussed in the previous section, in translating ξ@pre, we assume
an enumeration of their occurrences, say ξ@ipre for 1 ≤ i ≤ n. Each
numbered expression is then replaced by a fresh variable ui.

• In case of attributes or navigations ξ.a we apply the definition recursively
on the prefix. If both ξ and a are lists then the resulting BOTL expression
has to be flattened since the result would produce a nested list that is
not admitted by OCL. This is done explicitly by the operation flat .

• The expressions ξ→ω(ξ1, . . . , ξn) and ξ.ω(ξ1, . . . , ξn) are translated using
the corresponding BOTL (n+ 1)-ary operation ω̄.

60 Chapter 3 – A logic for object-based systems

3.5.3 Translating OCL constraints into BOTL

In this section, we complete the translation of OCL into BOTL by defining a
map ∆ : COCL → TBOTL.

Invariants. In case of an invariant, the translation has the typical prefix G.
The invariant must hold for all alive objects of the class C when none of their
methods is active. Let y ∈ LVar and dom(C.meths) = {M1, . . . ,Mk}. We
define:

∆(context C invariant ξ) =
G[∀x ∈ C ref : (¬∃m1 ∈ x.M1 ref:tt ∧· · ·∧ ¬∃mk ∈ x.Mk ref:tt)⇒ δx,y,[](ξ)].

We give an example of the application of this invariant schema.

Example 3.5.3. Consider again the OCL invariant in Example 3.4.2 assuming
that the collection guests is a bag.

context Hotel invariant
rooms.guests = guests

Recalling the considerations of Example 3.5.2 on set equality, we have:

δ(rooms .guests =guests) =EqList(sort(δ(rooms .guests)), sort(δ(guests)))
=EqList(sort(flat(x.rooms .guests)), sort(x.guests)).

We can embed the resulting BOTL expression in the invariant template taking
into account that the class Hotel has two methods, i.e., checkIn and checkOut :

G[∀x ∈ Hotel ref : (¬∃m ∈ x.checkIn ref : tt ∧ ¬∃m′ ∈ x.checkOut ref : tt)
⇒ EqList(sort(flat(x.rooms .guests)), sort(x.guests))].

Note that apart from the use of the more natural equal sign instead of EqList ,
the resulting invariant coincides with the invariant in Example 3.4.2.

Pre- and postconditions. Although the translation of OCL invariants into
BOTL is quite straightforward, the translation of pre- and postconditions is
more involved and requires an auxiliary definition. In particular, the OCL
operator @pre has to be handled in a special way as it forces us to consider
two different moments in time, i.e., the start and end of a method invocation.
As discussed above, we augment the precondition with some extra information
that is used to evaluate the postcondition.

Consider the OCL constraint context C :: M(~p) pre ξpre post ξpost . The
extended translated precondition w.r.t. the object o and the method occurrence
m, ξo,m,~ppre , is given by

ξo,m,~ppre , δo,m,~p(ξpre) ∧
∧

ξ@ipre∈ξ post

(ui = δo,m,~p(ξ))

3.5 Translating OCL into BOTL 61

where ui for 1 ≤ i ≤ n are fresh logical variables.
Here, the symbol ∈ means “occurs syntactically in”. Thus, for precondition
ξpre we construct an extended precondition ξo,m,~ppre using a new variable ui for
each subexpression ξ@ipre occurring in the postcondition. This new variable
“freezes” the value of ξ while evaluating the precondition and can be used in
the postcondition. Now we are ready to map OCL pre- and postconditions to
BOTL:

∆(context C :: M(~p) pre ξpre post ξpost) =
∀u1 ∈ τ1, . . . , un ∈ τn : ∀z ∈ C ref : ∀m ∈ z.M ref :

G[m new ∧ ξz,m,~ppre ⇒ m aliveU(term(m) ∧ δz,m,~p(ξpost))]

where term(m) ≡ m alive ∧ X(m dead).

The expressions ξz,m,~ppre and ξpost are embedded in a kind of “template” scheme.
Intuitively, a pre- and postcondition holds if and only if for all invocations m
of M executed by an object of the class C we have that: if the (extended)
precondition holds at the moment of the method call (i.e., the method is new),
then the postcondition holds when the method execution terminates. This
must be true for all active objects of C and all possible executions of the
method M . In other words, a pre- and postcondition is actually an invariant on
method calls. Note that because of the assumption on the operational model
(cf. page 46) the expression ξpost is defined at the moment of the method
termination.

The encoding of pre- and postconditions presented here reflects a total cor-
rectness criterion since it requires the termination of the method. In the oper-
ational model the use of paths satisfying the fairness constraint on the accept
states can avoid situations where a method is unable to terminate because it
never gets its turn12. Alternatively, we could have chosen to demand only par-
tial correctness avoiding to enforce termination. Replacing one approach with
the other is not an involved exercise [79]. Although the OCL specification does
not provide us with any guidelines on the partial or total interpretation of pre-
and postcondition, also other OCL formalisations choose total correctness (for
example cf. [97]).

Example 3.5.4. Suppose we want to translate the pre- and postcondition
given in Section 3.4.1:

context Hotel :: CheckIn(g:Guest)
pre not guests→includes(g)
post guests→size = guests@pre→size+ 1 and guests→includes(g).

Again, let us call the precondition ξpre and the postcondition ξpost . Consider
two logical variables z and m. The former will be instantiated with an object of

12This can be done when extracting the model out of the source code. Sections 4.4.2
and 5.6.2 show, for example, how to use accept states to enforce only fair path among a set
of processes.

62 Chapter 3 – A logic for object-based systems

class Hotel and the latter with an occurrence of the method checkIn. Applying
δ to ξpre yields:

δz,m,g(not guests→includes(g)) = ¬δz,m,g(guests→includes(g))

= ¬includes(z.guests,m.g)

where includes is a BOTL operation that, given a list w and an element l,
returns tt if and only if the element l belongs to w. The extended precondition
becomes:

ξz,m,gpre ≡ ¬includes(z.guests,m.g) ∧ u1 = δz,m,g(guests)

≡ ¬includes(z.guests,m.g) ∧ u1 = z.guests

After some calculations, the translation of the postcondition yields:

δz,m,g(ξpost)= δz,m,g(guests→size) = δz,m,g(guests@pre→size) + 1
∧ δz,m,g(guests→includes(g))

= (size(z.guests)=size(u1)+1 ∧ includes(z.guests,m.g)).

The translation of the pre- and postcondition now yields:

∀u1 : ∀z ∈ Hotel ref : ∀m ∈ z.checkIn ref : G[m new ∧ ξz,m,gpre

⇒ m aliveU(term(m) ∧ δz,m,g(ξpost))].

Figure 3.4 describes the configurations of the transition system during the
execution of the method checkIn and indicates how the validity of the pre-
and postcondition changes. Inside the states it is possible to observe how the
components O, E, ς and γ evolve w.r.t the configuration. In the figure we
have abstract from the value of the attributes since they are not relevant for
this example. In configuration 1, object g1 does not belong to the guests of h
and the method has not been invoked yet, in fact the set of method calls E
is empty. In this state it is not possible to talk about the validity of pre- and
postcondition of the method call m. In configuration 2, the method ζ is newly
born as a result of the method invocation. Therefore, in this state m new and
the precondition ξpre are valid since g1 is still not a guest of the hotel. In
configuration 3, as a first step of the method execution, g1 is inserted among
z guests. Thus, ξpre does not hold anymore. However, from this state ξpost
becomes valid. m is not new anymore. In configuration 4, g1 is assigned to
room r and the method execution ends. The postcondition ξpost still holds,
and this is precisely the state in which it should hold. Finally in configuration
5, checkIn is deallocated and it does not exist anymore. Notice how in this
example it becomes clear why the invariant in Example 3.4.2 does not hold
during the execution of checkIn .

3.5.4 How to employ BOTL for OCL tools

Probably, a more pragmatic reason that may increase the significance of the
translation defined in the previous section has to be sought in the still rather

3.5 Translating OCL into BOTL 63

g

return ()

g

return ⊥

ξpre
¬ξpost

¬ξpre
ξpost

¬ξpre
ξpost

m new

m old

m old

m dead

m alive

m alive

m alive

1

2

3

4

5

g

return ⊥

term(m)

ζ : h.checkIn

ζ : h.checkIn
h : Hotel r : Room

g2 : Guestg1 : Guest

ζ : h.checkIn
h : Hotel r : Room

g2 : Guestg1 : Guest

h : Hotel r : Room

g2 : Guestg1 : Guest

h : Hotel r : Room

g2 : Guestg1 : Guest

h : Hotel r : Room

g2 : Guestg1 : Guest

Figure 3.4: Configurations during the execution of checkIn(g1).

limited tool support for OCL. Indeed, a number of developed CASE tools sup-
port OCL (the reader is referred to [65, 97] for a list of them). However, they
are mostly limited to check the syntax or the types of the constraints. So far,
the most advanced tools can validate constraints against single configurations
of the system (also called snapshots) given manually by the user. This is ob-
viously not enough, in fact, the validation of a constraint against snapshots
may only give some hints on the adequateness of a constraint. However, this
does not allow the user to conclude anything with respect to the validity of the

64 Chapter 3 – A logic for object-based systems

YES Counter Example

constraints

constraints

object-based

OCL
Class Model

UML

constraints

implementation

Model
Checker

program

BOTL

ModelMD

Compiler

Model
Generator

OCL/BOTL

Operational

constraints

Figure 3.5: Architecture of a possible model checking tool for OCL

constraint itself. Experience has shown that due to the ever increasing com-
plexity of systems, attempts to assess their correctness by engineering “rules of
thumb” easily lead to wrong conclusions and may cause costly redesigns. By
their very nature, invariants are required to be valid at any configuration of the
system (except, as we have seen, those involving side effects). Similarly, pre-
and postconditions must be valid at any invocation of the method they refer to.
The current presence of the above mentioned tools attests a need to accomplish
the development of more ambitious ones able to support automatic verification
of systems with respect to OCL constraints by means of techniques such as
model checking. This is certainly a challenge. The translation of (a subset of)
OCL into BOTL that we have defined in this chapter, and the model checking
algorithms for subsets of BOTL that we will define in the next chapters may be
seen as a first step towards a future achievement of such tools. Figure 3.5 de-
picts how BOTL may be exploited to accomplish the construction of a model
checker for object-based systems that uses OCL as a specification language.
Given an object-based program, constraint can be written in OCL either at
the UML class diagram level or directly at the source code level. The light
gray dashed box can be seen as a back-end of a tool composed by a compiler
OCL/BOTL, a model generator and a model checker. From a very pragmatic
point of view, the software developer that knows OCL does not have to be
aware of the parts inside the back-end. If implemented, the translating map
provided in this chapter would represent the compiler OCL/BOTL. If imple-
mented for the complete BOTL, the algorithms that we define in Chapter 4

3.6 Related work 65

and Chapter 5 would represent the model checker itself13. Finally, a model gen-
erator can be constructed from the definition of an operational semantics for
the particular programming language considered (e.g. Java). This definition
can be an extension of the operational semantics that we define in Section 4.4
and Section 5.6 for two simple imperative languages with some object-based
feature.

3.6 Related work

In this section we describe some work related to BOTL. We start with a lan-
guage that is very close to BOTL and therefore deserves some deeper compar-
ison, afterwards we give a summary on the others works.

3.6.1 The Bandera Specification Language

The Bandera Specification Language (BSL) [33] is a formalism defined within
the Bandera tool-set [32] developed at Kansas State University. BSL allows
the specification of properties of multi-threaded Java programs. These prop-
erties are then model-checked by the Bandera system. It is interesting to see
that although BSL and BOTL have been developed independently and simul-
taneously, they have several common aspects. In this section, we give a quick
overview on BSL trying to compare it, whenever possible, with BOTL.

BSL is divided in two parts: the assertion sub-language and the temporal
sub-language.

Assertion sub-language. Assertions provide an easy way to write con-
straints on data at particular points of the program. Assertions contain side-
effect free Java expressions (e.g. tests on program variables). Three kinds of
assertions can be defined in BSL:

• preconditions that, as usual, must hold in the first executable statement
of a given method;

• postconditions that must hold immediately after the execution of a return
statement in the method, or after the execution of the last statement of
the method if no return statement exists;

• location assertions that must hold when the control is at a particular Java
statement.

BOTL does not provide assertion facilities, at least in the sense of BSL location
assertions. This is mostly due to the fact that BOTL is meant to be independent
from the programming language, therefore, its properties cannot directly apply

13Using bounds on the number of objects and method calls it could be possible to use some
existing LTL model checker.

66 Chapter 3 – A logic for object-based systems

to special points of the source code. However, as we have seen in Section 3.5,
in BOTL it is possible to define pre- and postconditions.

Temporal sub-language. The temporal sub-language allows to specify prop-
erties along the execution of the program. The atomic propositions are given
by predicates on program features like instance variables and static variables,
control points such as method entry and exit. Predicates are embedded into
temporal specifications that are not based on a particular temporal logic, but
on a collection of temporal specification patterns that are automatically trans-
lated in the particular specification language accepted by the checkers used by
Bandera (e.g. LTL for SPIN [61] or CTL for SMV [80]). Specification patterns
are an important consequence of the fact that, in the design of BSL, special care
was given by the authors to the challenge of making this formalism easily acces-
sible to software developers normally not acquainted with temporal logic. The
idea of the specification patterns is the following: the authors have observed
that most of the software requirements, normally specified, follow just a few
different patterns such as: universal, absence, existence, response, precedence.
For example, the universal pattern requires its argument to be valid through-
out the complete execution, therefore it essentially corresponds to an invariant.
Whereas, the precedence pattern requires that a particular state/event is fol-
lowed by another designated state/event. Thus, this pattern can be considered
as the specification of a liveness property. For software developers the ad-
vantage to use pattern specification instead of the complete temporal logic is
clear: it is easy to learn since most of the complexity of the temporal specifica-
tion is predefined in a rather high-level manner. Furthermore, libraries of new
patterns may be defined by the user extending thus those already existing.

The embedding of BOTL (static) expressions into BOTL temporal formulae
follows clearly a different point of view. The user is free to define its own
specification using the complete power of the temporal logic14. Of course,
this may be difficult on the one hand, but very powerful on the other hand.
Nevertheless, it is easy to imagine the definition of the BSL patterns for BOTL
as it has been done for invariants and for pre- and postcondition. In this respect
the encoding of OCL constraints given in Section 3.5 can be seen as a definition
of temporal patterns for BOTL.

Class instance quantification. Unavoidably, BSL faces the problem re-
lated with the dynamic nature of objects and instances of method call. The
language permits a quantification over allocated instances of a class. Without
this mechanism it would be impossible to reason about allocated objects along
program executions since program variables containing a reference to an object
can change during the evolution of the system. The resulting quantification
is similar to the one used in BOTL, although there exists a difference in the

14Note that, for expert users, in BSL there is still the possibility to write specifications in
temporal logic.

3.6 Related work 67

way the quantification is dealt with. Namely, at the semantical level, BSL
enforces an upper bound on the number of instances that can be allocated by
a class during the program execution. This limitation is essentially imposed
by the back-end model checkers used by Bandera. In fact, the semantics of
BSL is defined in terms of Java state transition systems that, in turn, are a
modification of state transition systems [78] used for the semantics of LTL and
used by SPIN as well. Java transition systems are the cross product of a finite
number of components that capture essential information about the execution
of Java programs. Therefore, these kind of models are static, and in order to
be finite, every component of the cross product must range over a finite do-
main. Thus, the number of allocations allowed for every class in the program
must be bounded. Java transition systems can then be mapped back onto stan-
dard transition systems accepted by the model checkers used as a back-end of
Bandera.

In BOTL we do not impose any restriction on the creation mechanism. In
Chapter 4, we will study how to define appropriate models that overcome the
problems related to the unboundedness of the state space obtained by object
creation.

3.6.2 Others

On the formalisation of OCL. As mentioned before, the problem of for-
malising OCL has received more attention. Beside our translation into BOTL,
a massive amount of work as been done in Richters PhD thesis [95], almost
completely devoted to the formalisation of OCL, and in turn is based on previ-
ous work of the same author and Gogolla [52, 53, 96, 97]. Their formalisation
is based on pure set theory.

Other formalisations that map OCL into some formal language are given
by the following approaches:[55, 56] provide a mapping of OCL into the Larch
specification language. In [10], OCL constraints are translated into expressions
over graph rules. In [7], a mapping to algebraic specifications is defined.

OCL and temporal logics. Extensions of OCL with temporal operators
have been proposed. The paper [93] extends OCL with operators of linear
temporal logic but does not provide a formal semantics to its extension. A
similar proposal is given in [30], but again without a formal foundation. As
the original definition of BOTL [42], a CTL extension of OCL is given in [48]
where the system behaviour is modelled by state-chart diagrams.

Strongly based on BOTL is the observational µ-calculus extension of OCL
presented in [13]. Here, BOTL operational model are used. The resulting
formalism, called Oµ(OCL), is a two-level logic where OCL represents the lower
level part and, as in BOTL, is expresses the static properties of the system.

Finally, another OCL temporal extension with future and past operators of
a linear temporal logic has been recently given in [114].

68 Chapter 3 – A logic for object-based systems

Object-based logics. Logics for reasoning about object-oriented systems
have been mainly based on Hoare-style logics that concentrate on verifying
pre- and postconditions and/or invariants [3, 39, 64, 92].

Temporal logics for object-oriented systems have been previously defined.
Amongst others: [70] presents the specification language TROLL for the con-
ceptual modelling of information systems. The formal semantics of TROLL
is given in terms of a translation into a temporal logic. [102] proposes, in an
axiomatic style, a temporal logic for reasoning about object classes and their
instances. The logic supports two levels of reasoning: local reasoning related
to a single object and global reasoning related to a community of objects. A
modal logic for an object calculus is presented in [4].

A language for specifying LTL properties of Java programs somehow similar
to the BSL was given in [66] and then used in a tool-set having as a back-end
the model checker dSpin [41]. The language allows the definition of predicates
at the Java source code level: in particular it addresses program variables as
well as in critical control points such as method invocation and method exit.
Moreover, this language allows a mechanism of quantification over integers
whereas quantification over class instances is not provided.

Finally, Alloy [68] is a declarative object-modelling language that comes
with a formal semantics. Alloys’s underlying data are sets and relations, in
this sense it is a relational language. Alcoa [69] is an analysing tool for Alloy
specifications. However, since Alloy is not a decidable language, Alcoa is neither
sound nor complete. It only conducts a search within a finite scope chosen by
the user. The idea behind is that, according to the authors, if a counterexample
does exist it will most likely be found within a small scope. In practise, the
user cannot conclude anything if no counterexample is found.

4

Dynamic Allocation and

Deallocations

4.1 Introduction

As we have seen in Section 2.3.2, allocation and deallocation are fundamental
concepts in object-based systems. Arbitrarily many dynamic objects (enti-
ties) can be created (allocated) during the computation. Moreover, objects can
be destroyed (deallocated) e.g., by a garbage collector. Similarly, instances of
method calls (used by objects for interaction) are entities that are allocated
(created) at the moment of the invocation and that are deallocated (destroyed)
when the body of the method is completed.

In this chapter we aim to restrict BOTL defined in Chapter 3 to a core
subset able to capture the birth and death of abstract entities as primitive
concepts. Our attempt to formulate such a core logic, resulted in what we call
A``ocational Temporal Logic (A``TL) [45]. It has the following features:

• Entity variables x, y, interpreted by a mapping to the entities existing
(i.e., alive) in a given state. The interpretation is partial : a variable not
mapped onto an existing entity stands for an entity that has died.

• Entity equations x = y (where x, y are entity variables), asserting that
x and y refer to the same entity. This cannot hold if either x or y has
died; hence the entity equations express a partial equivalence of entity
variables (symmetric and transitive, but not reflexive).

69

70 Chapter 4 – Dynamic Allocation and Deallocations

• Entity quantification ∃x.φ, which holds in a given state if φ holds for
some interpretation of x, provided that x is alive.

• A predicate x new to express that the entity referred to by x is fresh, i.e.,
born.

In addition, A``TL has the standard LTL temporal operators (although, as for
BOTL, a branching-time version with CTL temporal operators can be defined
in a rather similar way, see page 44).

The logic is interpreted over so-called High-level Allocational Büchi Au-
tomata (HABA), which extend HD-automata [83, 84, 90] with a predicate for
the unboundedness of (the number of entities in) a state, and with a (gener-
alised) Büchi acceptance condition. As for HD-automata, a crucial point is that
entity identity is local to a state. Correspondence between the identity of the
same entity in two different states is ensured by a mechanism of re-mapping.

HABA can be used as finite-state abstraction of certain kinds of infinite-
state systems. As an example, we define a small language whose main features
are the allocation and deallocation of entities. Although the number of entities
allocated by a program in this language can be unbounded, the operational se-
mantics yields a finite HABA. This is a significant condition for the application
of model checking.

Together with the logic A``TL, the main contribution of this chapter is that
the model-checking problem for A``TL is shown to be decidable on HABA. In
particular, we present a tableau-based model-checking algorithm that decides
whether or not a given A``TL-formula holds for a given HABA. Our algo-
rithm extends the tableau-based algorithm for LTL [77]. To the best of our
knowledge, this yields the first approach to effectively model-check birth and
death behaviour of models with an unbounded number of entities1. This is of
particular interest — for what observed above — towards the verification of
object-oriented systems in which the number of objects is typically not known
in advance and may be even unbounded. Currently, in tools for model check-
ing object-oriented systems (such as [32, 58]), dynamic creation of objects is
only supported to a limited extent (the number of created objects must be
bounded). Finally, reasoning about allocation and deallocation of fresh entities
is relevant not only for object-based systems, but also in relation to privacy
and locality as discussed in, e.g., [2, 17, 21, 82].

This chapter is organised as follows. First of all we define the logic (Sec-
tion 4.2) and its automata (Section 4.3). The simple imperative language,
featuring statements for the allocation and deallocation of entities, with an
operational semantics in terms of HABA is given in Section 4.4. The definition
of the model checking algorithm for A``TL formulae against HABAs is given

1Recently other attempts have been proposed in the literature [113]. However, these
techniques are only sound but note complete. The reader is referred to Section 4.6 for a
broader overview of the literature.

4.2 Allocational temporal logic 71

in Section 4.5. The chapter is concluded with a discussion about related work
in Section 4.6.

4.2 Allocational temporal logic

4.2.1 Syntax

For the definition of the logic, in the following we assume the existence of:

• the countable universe of logical variables LVar, ranged over by x, y, z, . . .

• a countable universe of entities Ent , ranged over by e, e′, e1,

Allocational Temporal Logic (A``TL) is an extension of propositional LTL [91]
that allows existential quantification over logical variables that can denote en-
tities, or may be undefined. It is a subset of BOTL defined in Chapter 3 that
focuses on the birth and death of entities. For x ∈ LVar, the syntax of A``TL
is defined by the following grammar:

φ ::= x new | x = x | x alive | ∃x.φ | ¬φ | φ ∨ φ | Xφ | φUφ.

Let us quickly recapitulate the intuitive meaning of the operators2. Formula
x new holds if the entity denoted by x is fresh in the current state, i.e., the
entity denoted by x did not exist in the previous state. Formula x = y holds if
variables x and y denote the same entity in the current state; x = x is violated
if x is undefined, i.e., if x does not denote any current entity. x alive is true
if x denotes an entity currently alive in the state. ∃x.φ is valid in the current
state if there exists an entity for which φ holds if assigned to x. In contrast
to BOTL that distinguishes among different types, in A``TL the only universe
of values is Ent . Therefore in the syntax of the existential quantification, we
drop the specification of the type. In the context of BOTL, Ent corresponds
to the references of objects and method calls. For the purpose of dynamic
allocation and deallocation there is no reason to distinguish between them,
therefore it is convenient to consider Ent as single abstract domain3. Negation
and disjunction are the standard operators of classical propositional logic, while
X (next) and U (until) are the standard LTL operators.

Abbreviations. We use the standard abbreviations from propositional and
temporal logic, as well as those introduced for BOTL (cf. Table 3.1). Others
more typical of A``TL are listed in Table 4.1.

Example 4.2.1. Some example properties concerning dynamic allocation and
deallocation expressible in A``TL are reported in Table 4.2.

2For a more comprehensive illustration of the informal interpretation the reader is referred
to the discussion related to BOTL given in Chapter 3

3It is obvious that element of Ent may be instantiated not only to objects and method
calls, but to any other concept for which we want to reason about allocation and deallocation,
e.g., resources, memory, channels, etc.

72 Chapter 4 – Dynamic Allocation and Deallocations

• x 6= y for ¬(x = y)
• x dead for ¬(x alive)
• x old for x alive ∧ ¬(x new)
• ∀x.φ for ¬∃x.¬φ
• tt for ∀x.(x alive)
• ff for ¬tt

Table 4.1: Typical abbreviations of A``TL.

New entities are always available G(∃x.x new)

The number of entities that are alive
never exceeds 2 G(∀x.∀y.∀z.(x = y ∨ x = z ∨ y = z))

The number of alive entities
will never be less than 2 G(∃x.∃y.(x 6= y))

A fresh entity will always
eventually be allocated GF(∃x.x new)

The number of entities that are
continuously alive grows unboundedly G((F∃x.x new) ∧ ∀x.X(x alive))

Before x is deallocated, x alive U∃y.(y new∧
two new entities will be allocated (x alive U∃z.(z new ∧ y 6= z ∧ x alive)))

Every entity in the current state
will be eventually deallocated ∀x.F(x dead)

A deallocated entity cannot be
reallocated (this will be a tautology) G(x dead ⇒ X(x dead))

An entity that is identified now is no
longer new in the next state (tautology) X(x dead ∨ x old)

Table 4.2: Some example properties expressed in A``TL.

4.2.2 Semantics

A``TL formulae are interpreted over infinite sequences of sets of entities. Every
set contains the live entities in a particular moment in time (i.e., in a state).

Definition 4.2.2. An allocation sequence σ is an infinite sequence of sets of
entities E0E1E2 · · · where Ei ⊆ Ent , for i ∈ N.

Let σi = EiEi+1 · · · . For given σ, Eσi denotes the set of entities in the
i-th state of σ. The semantics of A``TL-formulae is defined by the satisfaction
relation σ,N, θ |= φ where σ is an allocation sequence, N ⊆ Eσ0 is the set of
entities that is initially new, and θ : LVar ⇀ Ent is a partial valuation of the
free variables in φ. Let Nσ

i denote the set of new entities in state i, defined by,

Nσ
i =

{
N if i = 0
Eσi \E

σ
i−1 otherwise.

(4.1)

Similarly, let θσi : LVar ⇀ Ent denote the valuation at state i, i.e., the valua-
tion that is undefined for the variables that θ maps outside Eσi , and coincides

4.2 Allocational temporal logic 73

with θ otherwise. Formally,

θσi (x) =

{
θ(x) if ∀k 6 i : θ(x) ∈ Eσk
undefined otherwise.

(4.2)

The previous definition imposes that if x denotes e ∈ Ei then e must have been
continuously alive (non-resurrection condition for variable denotations). The
condition avoids that contradictions like ∃x.X(x dead ∧ Xx alive) are fulfilled.
Note that once a logical variable is mapped to an entity, then this association
remains along σ unless the entity dies, i.e., is deallocated. The association
remains undefined even if the entity re-occurs again in a state later on (see
Section 4.2.4 for a more detailed discussion on these concepts).

Proposition 4.2.3. θσi+1 = θσi �Ei+1.

The satisfaction relation |= is defined as follows:

σ,N, θ |= x new iff x ∈ dom(θ) and θ(x) ∈ N
σ,N, θ |= x = y iff x, y ∈ dom(θ) and θ(x) = θ(y)
σ,N, θ |= x alive iff x ∈ dom(θ)
σ,N, θ |= ∃x.φ iff ∃e ∈ Eσ0 : σ,N, θ{e/x} |= φ
σ,N, θ |= ¬φ iff σ,N, θ 2 φ
σ,N, θ |= φ ∨ ψ iff either σ,N, θ |= φ or σ,N, θ |= ψ
σ,N, θ |= Xφ iff σ1, Nσ

1 , θ
σ
1 |= φ

σ,N, θ |= φUψ iff ∃i : (σi, Nσ
i , θ

σ
i |= ψ and ∀j < i : σj , Nσ

j , θ
σ
j |= φ).

Here, θ{e/x} is defined as usual, i.e., θ{e/x}(x) = e and θ{e/x}(y) = θ(y) for
y 6= x.

Proposition 4.2.4. The following formulae are tautologies:
• x = y ⇒ y = x • (x = y ∧ y = z)⇒ x = z
• x new⇒ x alive • (x = y ∧ x new)⇒ y new
• x = y ⇒ X(x dead ∨ x = y) • X(x = y)⇒ x = y
• ∀x.x alive • G(x dead⇒ X(x dead))
• X(x dead ∨ x old) • x alive ⇔ x = x.

Proof. Straightforward application of the A``TL semantics. As an example we
prove only the case x alive ⇔ x = x, the other cases are similar and omitted
here. Let σ be an arbitrary allocation sequence andN , θ defined as above. Then
σ,N, θ |= x alive ⇒ x ∈ dom(θ) ⇒ θ(x) = θ(x) ⇒ σ,N, θ |= x = x. Vice-
versa σ,N, θ |= x = x ⇒ x ∈ dom(θ) ∧ θ(x) = θ(x) ⇒ σ,N, θ |= x alive.

Note that from the previous proposition it becomes clear that x alive can be
introduced as syntactic sugar for x = x. Here we prefer to define it as primitive
since it seems to be more intuitive. For the other approach we refer the reader
to [44]. Another straightforward implication of the A``TL semantics is that
the universal quantification does not “commute” with the next operator. In
fact, the quantification is over a dynamic domain that may change from state
to state. Therefore we have the following:

Proposition 4.2.5. For all A``TL-formulae φ: ¬(∀x.Xφ ⇔ X∀x.φ).

74 Chapter 4 – Dynamic Allocation and Deallocations

4.2.3 Folded allocation sequences

In order to come to a finite representation of allocation sequences there are
several difficulties to overcome: the sequences are infinite themselves, and in
general they range over an infinite set of entities (i.e., |

⋃
i∈N

Ei| = ω). The
former problem can be solved, by generating allocation sequences as runs of
a Büchi automaton; the latter problem requires a change in representing the
allocation sequences. This change is based on the following observations:

• A``TL-formulae cannot address entities directly, but only through log-
ical variables. The choice of representation for the entities is therefore
irrelevant from the point of view of the A``TL semantics.

• A``TL-formulae allow the direct comparison of entities only within a
state. The interpretation will not change if we allow for reallocating
entities from a state to the next state, as long as this is done injectively
so that distinct entities remain distinguished.

These considerations bring us to the following definition.

Definition 4.2.6. For E,E′ ⊆ Ent ,

• A reallocation λ from E to E ′ is a partial injective function λ : E ⇀ E ′.

• A folded allocation sequence is an infinite alternating sequence

E0λ0E1λ1E2λ2 · · ·

where λi is a reallocation from Ei to Ei+1 for i > 0.

Thus, entity e is considered to be deallocated if e 6∈ dom(λ). We write λσi
for the reallocation function of σ in state i. Note that for folded allocation
sequence σ with associated initial set N and valuation θ,

Nσ
i =

{
N if i = 0
Eσi \cod(λσi−1) otherwise.

(4.3)

Similarly,

θσi =

{
θ if i = 0
λσi−1 ◦ θ

σ
i−1 otherwise.

(4.4)

(Hence θσi = λσi−1◦· · ·◦λ
σ
0 ◦θ for all i ∈ N.) Using these adapted definitions ofN

and θ, the same definition of satisfaction relation |= holds for folded allocation
sequences. In the following we indicate by |=u and |=f the semantics of A``TL
in the unfolded4 case and in the folded case, respectively.

4In the following we will sometimes use unfolded allocation sequences in order to stress
the difference w.r.t folded allocation sequences. When the context is clear and no ambiguities
can arise, we will skip the adjectives folded or unfolded.

4.2 Allocational temporal logic 75

4.2.4 Relating unfolded and folded allocation sequences

At this point, after having defined two different models for A``TL, namely,
unfolded and folded allocation sequences, it is interesting to study their relation.
For allocation sequence σ = E0E1E2 · · · , let id (σ) be the folded allocation
sequence defined by E0id 0E1id 1E2id2 · · · where id i = id � (Ei ∩ Ei+1). We
have the following straightforward fact:

Proposition 4.2.7. For any A``TL-formula φ we have

σ,N, θ |=u φ iff id (σ), N, θ |=f φ.

Neither folded nor unfolded allocation sequences are fully abstract with
respect to the validity of A``TL-formulae, as several of such sequences may
satisfy the same formulae. We therefore consider folded allocation sequences
modulo isomorphism.

Definition 4.2.8.

• Two folded allocation sequences σ1 and σ2 are isomorphic (σ1
∼= σ2) if

there exists an indexed family of bijections (hi)i∈N with hi : Eσ1

i → Eσ2

i

such that λσ2

i ◦ hi = hi+1 ◦ λ
σ1

i (i.e., the hi’s are consistent with the
reallocations).

• Two allocation triples (σ1, N1, θ1), (σ2, N2, θ2) are isomorphic (written
(σ1, N1, θ1) ∼= (σ2, N2, θ2)) if dom(θ1) = dom(θ2), σ1

∼= σ2, and N2 =
h0(N1) and θ2 = h0 ◦ θ1.

Isomorphic allocation triples satisfy the same set of A``TL-formulae, as
stated by the following property.

Proposition 4.2.9. For A``TL-formula φ and folded allocation sequences
σ, σ′:

(σ,N, θ) ∼= (σ′, N ′, θ′)⇒ (σ,N, θ |=f φ iff σ′, N ′, θ′ |=f φ) .

Proof. By a straightforward induction on the structure of φ.

Unfolded and folded allocation sequences are related by vfold .

Definition 4.2.10.

(σu, Nu, θu) v
fold (σf , Nf , θf) iff (id (σu), Nu, θu) ∼= (σf , Nf , θf).

Allocation triples in the relation vfold enjoy the property to satisfy the same
set of A``TL formulae.

Proposition 4.2.11. For A``TL-formula φ, folded allocation sequence σf and
allocation sequence σu:

(σu, Nu, θu) v
fold (σf , Nf , θf)⇒ (σu, Nu, θu |=u φ iff σf , Nf , θf |=f φ) .

76 Chapter 4 – Dynamic Allocation and Deallocations

������������������������������
single state of an allocation sequence

reallocation

new entity

old entity

Symbol Meaning

Figure 4.1: Visual notation for (folded) allocation sequences.

Proof. According to the definition (σu, Nu, θu) vfold (σf , Nf , θf) if and only
if (id (σu), Nu, θu) ∼= (σf , Nf , θf). By Proposition 4.2.9, id (σu), Nu, θu |=f φ
if and only if σf , Nf , θf |=f φ. From Proposition 4.2.7, it now follows that
σu, Nu, θu |=u φ if and only if σf , Nf , θf |=f φ.

The following results show that allocation sequences and folded ones can
both be used as models of A``TL-formulae:

Proposition 4.2.12. For an arbitrary folded allocation sequence σf and un-
folded allocation sequence σu:

1. For every (σu, Nu, θu) there exists a (σf , Nf , θf) such that

(σu, Nu, θu) v
fold (σf , Nf , θf)

2. For every (σf , Nf , θf) there exists a (σu, Nu, θu) such that

(σu, Nu, θu) v
fold (σf , Nf , θf).

Proof. See Appendix A.1.

Visual notation. Throughout this chapter, for allocation sequences we use
the visual notation indicated in Figure 4.1. Old (live) entities are depicted as
circles. New (live) entities are denoted by patterned circles. Reallocations are
indicated as dashed arrows between entities. A state of the (folded) allocation
sequence (i.e. a set of entities) is a dashed box that encloses the live entities.

Example 4.2.13. Let φ ≡ G(∃x.x new) and E1 = {e1}, E12 = {e1, e2}, E23 =
{e2, e3}. Consider the allocation sequences depicted in Figure 4.2 (top). If the
initial set of new entities N = E1, the unfolded allocation sequence

σ = E1(E12E23)
ω

4.2 Allocational temporal logic 77

�� ������������������������������	�	�		�	�		�	�	
�
�

�
�

�
�
���

������������������������������ ������������������������������ ������������������������������ ������������������������������ ������������������������������ ������������������������������

������������������������������

��� � � � � � �

!�!�!!�!�!!�!�!"�"�""�"�""�"�"

E23

e2

e3

e1

e2

E12 E23

e2

e3

e1

e2

E12E23

e2

e3

e1

e2

E12

e1

e2

E12

e1

e2

E12

e1

e2

E12

e1

e2

E12

....σ
e1

e2

E12

....σ′f
e1

e2

E12

e1

E1

e1

e2

E12

e1

e2

E12

e1

e2

E12

e1

e2

E12

e1

e2

E12

e1

E1

....σ′
e1

e2

E12

e1

E1

Figure 4.2: Folded and unfolded allocation sequences.

satisfies φ for any θ, whereas (cf. Figure 4.2 middle row)

σ′ = E1E
ω
12

does not, since after the second state, entities in E12 are continuously old. Let
λ1 : E1 ⇀ E12 and λ2 : E12 ⇀ E12 be two reallocations such that λ1(e1) = e2,
λ2(e1) = e2 and λ2(e2) is undefined. The folded allocation sequence

σ′
f = E1λ1(E12λ2)

ω

has the same sets of entities as σ′ (cf. Figure 4.2 bottom row). Nevertheless,
σ′
f satisfies φ. In fact, by the reallocations λ1 and λ2, the entity e1 is new (e1 /∈

cod(λ1) ∪ cod(λ2)) in every state. Moreover, in σ′
f the entity e2 dies at every

step while in σ′ e2 is continuously alive. Thus, the formula G(∀x.(XXx dead))
is satisfied by σ′

f but not by σ′.

The metempsychosis metaphor. The difference in the use of entity iden-
tity in unfolded and folded allocation sequences can be explained in a more
intuitive way by what we may call the metempsychosis metaphor. Quoting an
adapted version5 from a 1911 Encyclopedia Britannica,

“Metempsychosis (or transmigration of the soul) is the doctrine
that at death the soul passes into another living creature, human,
animal, or even a plant.”

5http://www.wikipedia.org

78 Chapter 4 – Dynamic Allocation and Deallocations

In this doctrine, it is believed that a living creature (a being) has a soul con-
nected in some way to the material body.

Having clarified these premises, the idea of the metempsychosis metaphor is
to identify an entity as a soul that can be connected to a certain living creature
which corresponds instead with what is denoted ideally by a logical variable.
We have a countable number of souls (in the universe Ent) and at every moment
only a finite number of them is associated with a respective living being.

Unfolded allocation sequences use metempsychosis in the strict sense. The
soul (entity) is associated with a single living creature for its entire life. Since
the living creature is born, till it dies, it is connected to the same soul. Once
the being dies, its soul can reappear again in the world, but then in another
living creature that is therefore born in that very precise moment. For example,
consider the allocation sequence σ in Figure 4.2. Entity e1 is connected with
a being that is alive in the first and in the second state, but in the third
state, e1’s associated living creature dies. In the fourth state, e1 reappears,
but this time it has migrated (reincarnated) in a different being (newly born)
than the previous one which is now, instead, definitely dead. This explains
why a variable interpreted into e1 in the first state is considered deallocated
for ever in the third state even if e1 reappears later. In terms of this metaphor,
a logical variable x denotes the living creature connected to the entity θ(x)
where x is interpreted. This latter observation may help to clarify also the
non-resurrection condition for variable denotations imposed by (4.2) on θ (see
page 73)6. For a living creature the presence of its own soul is essential to ensure
the continuity of its life. Hence, in unfolded allocation sequences identity of
entities plays a relevant role in the life of a being.

Using the same metaphor, we can observe that in the context of folded
allocation sequences, transmigration of the soul applies as well, but on a gener-
alised level. In particular, the precondition on the death of the living creature
connected to the soul is now released. A soul can depart from its connected
material body even if this is still alive. However, the implicit postulate that a
being is associated to a soul in every moment of its life is still valid7. There-
fore, in folded allocation sequences the separation between the body and soul
is complete. For an individual, the continuation of life is ensured completely
by the reallocations. The latter decides for every living creature if it will have
a soul in the next state and, if so, which one. It is completely irrelevant which
particular soul is connected to the body from time to time, as long as, there
is one (i.e., the entity identity is inessential). And this is in contrast — as we
have just seen — with the case of unfolded allocation sequences, where the life
of a being is determined by the continuous presence of the same soul.

6Resurrection refers to the material body, not to the soul. It would be inconsistent to
think that the entity resurrect since it is equated to a soul.

7To the best of our knowledge, we are not aware of any religion and/or philosophy in the
ancient as well as in the contemporary world that actually believes in such system. Some
sporadic cases of soul exchange between individuals, though, seems to occur in some science
fiction novels.

4.3 Automata for dynamic allocation and deallocation 79

4.3 Automata for dynamic allocation and deallocation

In Section 2.1.1 we introduced the notion of (generalised) Büchi automata [16].
In this section, we define two extensions of this formalism, namely: Allocational
Büchi automata (ABA) that generate allocation sequences and High-level Al-
locational Büchi automata (HABA) that generate folded allocation sequences.
Typically ABA are infinite state, whereas for the cases that we are interested
in, the corresponding HABA is finite state. The HABA model is inspired by
history-dependent (HD) automata [83, 84, 90]. The precise relationship be-
tween ABA and HABA is investigated in Section 4.3.3.

4.3.1 Allocational Büchi Automata

ABA are basically generalised Büchi automata where to each state a set of
entities is associated. These entities, in turn, serve as valuation of logical
variables used on A``TL-formulae.

Definition 4.3.1. An Allocational Büchi Automaton (ABA) A is a tuple
〈X,Q,E,−→, I,F〉, with

• X ⊆ LVar a finite set of logical variables;

• Q a (possibly infinite) set of states;

• E : Q→ 2Ent a function yielding for each state q a finite set Eq of entities;

• −→⊆ Q×Q a transition relation;

• I : Q ⇀ 2Ent × (X ⇀ Ent) a partial function yielding for every initial
state q ∈ dom(I) an initial valuation (N, θ), where N ⊆ Eq is a finite set
of entities, and θ : X ⇀ Eq is a partial valuation of the variables in X ;

• F ⊆ 2Q a set of sets of accept states.

Notational conventions: we write q −→ q′ for (q, q′) ∈ −→. We adopt the
generalised Büchi acceptance condition, i.e, ρ = q0q1q2 · · · is a run of ABA A
if qi −→ qi+1 for all i ∈ N and |{i|qi ∈ F}| = ω for all F ∈ F . Let runs(A)
denote the set of runs of A. Run ρ = q0q1q2 · · · is said to accept the (unfolded)
allocation sequence σ = Eq0Eq1Eq2 · · · . The initial valuation (N, θ) associated
to an initial state facilitates the correspondence between models for A``TL-
formulae and ABA runs. The language of an ABA A is:

L(A)={(σ,N, θ)|∃ρ = q0q1 · · ·∈ runs(A) : ρ accepts σ ∧ I(q0)=(N, θ)}. (4.5)

Example 4.3.2. Figure 4.3 depicts an infinite-state ABA A for X = ∅ with
initial state q1 for which I(q1) = ({e1},∅). In initial states, patterned circles
denote new entities (as for allocation sequences). q2, q3, . . . are accept states

80 Chapter 4 – Dynamic Allocation and Deallocations

#�#�##�#�##�#�#$�$�$$�$�$$�$�$

....

e1

e1

e2

e1

e2

e3

e1
e2

e3

e4

q1

q2 q3 q4

Figure 4.3: An example ABA

(double circles). For simplicity, we assume |F| = 1. A accepts allocation
sequences that start with a single (new) entity and then move to a state where
an arbitrary number of new entities is created. From that point on, at every
step a single new entity is added, therefore the formula G(∃x.x new) is satisfied
by every triple (σ,N, θ) ∈ L(A). Note that entities are never deallocated, thus
the formula F(∃x.(Fx dead)) is not satisfied by any of these triples in L(A).

4.3.2 High-level Allocational Büchi Automata

Most of the ABAs describing interesting behaviours are infinite. The reason
clearly is that the model although rather intuitive is also quite simple. It is,
however, possible to improve the representation given by ABAs, by adding
some ingredient that in many cases permits to finitely represent behaviours
that are otherwise infinite, such as the allocation of an unbounded number of
entities. This is done in the formalism introduced in this section.

Let ∞ /∈ Ent be a special, distinguished entity, called black hole. Its role
will become clear later on. We denote E∞ = E ∪ {∞} for arbitrary E ⊆ Ent .

Definition 4.3.3. For E,E1 ⊆ Ent , an ∞-reallocation is a partial function
λ : E∞ ⇀ E∞

1 such that

• λ(e) = λ(e′) 6=∞⇒ e = e′ for all e, e′ ∈ E and

• ∞ ∈ dom(λ)⇒ λ(∞) =∞.

That is, λ is injective when mapping away from ∞ and preserves ∞.

Definition 4.3.4. A High-level ABA (HABA) H is a tuple 〈X,Q,E,−→, I,F〉
with X , Q, I , F as in Def. 4.3.1, and

4.3 Automata for dynamic allocation and deallocation 81

e1

e3

λ33

q3

λ13

e3

e1

e3

∞
λ44

λ12x

y

q1

q4

q2

λ22

e1

Figure 4.4: An example HABA

• E : Q→ 2Ent × B, a function that associates to each state q ∈ Q a finite
set Eq of entities and a predicate Bq that, if false, expresses the existence
of an unbounded number of entities in q not explicitly modelled by Eq ;

• −→⊆ Q × (Ent∞ ⇀ Ent∞) × Q, such that for q −→λ q′, λ is an ∞-
reallocation from E∞

q to E∞
q′ with

(i) ∞ ∈ dom(λ) iff Eq = (E,ff) and Eq′ = (E′,ff), and

(ii) ∞ ∈ cod(λ)⇒ Eq′ = (E′,ff).

A HABA is a symbolic representation of a (possibly infinite) ABA. Predicate
Bq holds in state q if and only if the number of entities in q is bounded. An
unbounded state q (denoted bqc), possesses the distinguished entity ∞ that
represents all entities that may be added to q (imploded entities). High-level
state q thus represents all possible concrete states obtained from q by adding
a finite number of entities to Eq . If a transition to state q′ maps (implodes)
entities into the black hole ∞, these entities cannot be distinguished anymore
from there on. We call this phenomenon black hole abstraction. Moreover, if
q −→λ q

′, entities in the black hole are either preserved (if bq′c), or are destroyed
(if dq′e). The black hole thus allows to abstract from the identity of entities
when, for example, these are not relevant anymore. Note that∞ 6∈ Ent implies
∞ /∈ cod(θ) for all (q,N, θ) ∈ I .

Example 4.3.5. The visual notation for HABAs is reported in Figure 4.5. An
example HABA is depicted in Figure 4.4 where X = {x, y}. In the initial state
q1, variable x denotes (old) entity e1, while y is undefined. Entity e3 in state q2
represents the same entity as e1 in q1, while e1 (in q2) represents a new entity.
The set of accept states is {{q2, q3, q4}}.

82 Chapter 4 – Dynamic Allocation and Deallocations

%�%�%%�%�%%�%�%&�&�&&�&�&&�&�& old entity

Symbol

initial new entity

∞-reallocation

Initial valuation

Bounded/Unbounded accept state

Bounded/Unbounded initial state

Bounded/Unbounded state

Meaning

Figure 4.5: Visual notation for HABAs

Run q1λ12(q2λ22)
ω generates sequences where the initial entity dies after

the second state, while the new entity created in the second state will be alive
forever. Run q1λ13(q3λ33)

ω generates sequences where the initial entity will be
alive forever, and in each state a new entity is created. This new entity will
die in the next state. Finally, run q1λ14(q4λ44)

ω (the reallocation λ14 is not
depicted since it is empty) generates sequences where the entity in the initial
state dies immediately. Once q4 is reached, a new entity e3 is created at every
step. Hence, in this run the number of entities grows unboundedly.

In the above example, we remarked that the runs of a HABA generate folded
allocation sequences that compose the language of the automaton. For ABA,
the correspondence between runs and sequences is trivial, since it corresponds
to take the sequence of sets of entities corresponding to the run (cf. (4.5)
page 79). For HABA however, the correspondence run/sequences is not at all
straightforward, mostly due to reallocations and black-hole abstraction. The
next definition makes this concept precise.

Definition 4.3.6. A run ρ = q0λ0q1λ1 · · · of HABA H = 〈X,Q,E,−→, I,F〉
generates an allocation triple (σ,N, θ), where σ = E0λ

σ
0E1λ

σ
1 · · · is a folded

allocation sequence, if there is a generator, i.e., a family of functions φi : Ei →
E∞
qi

satisfying for all i > 0:

1. ∀e, e′ ∈ Ei. (φi(e) = φi(e
′) 6=∞⇒ e = e′)

2. Eqi ⊆ cod(φi)

3. dqie ⇒ ∞ /∈ cod(φi)

4.3 Automata for dynamic allocation and deallocation 83

'�'�''�'�''�'�'(�(�((�(�((�(�(
)�)�))�)�))�)�)*�*�**�*�**�*�*

+�+�++�+�++�+�+,�,�,,�,�,,�,�,

-�-�--�-�--�-�-.�.�..�.�..�.�. /�/�//�/�//�/�/0�0�00�0�00�0�0 1�1�11�1�11�1�12�2�22�2�22�2�2 3�3�33�3�33�3�34�4�44�4�44�4�4
5�5�55�5�55�5�56�6�66�6�66�6�6 7�7�77�7�77�7�78�8�88�8�88�8�8 9�9�99�9�99�9�9:�:�::�:�::�:�: ;�;�;;�;�;;�;�;<�<�<<�<�<<�<�<
=�=�==�=�==�=�=>�>�>>�>�>>�>�> ?�?�??�?�??�?�?@�@�@@�@�@@�@�@ A�A�AA�A�AA�A�AB�B�BB�B�BB�B�B C�C�CC�C�CC�C�CD�D�DD�D�DD�D�D

e4 e1

e4 e4e1e5
....

e1 e5

e3 e2e1e7
....

....

ρ1 = q1λ12q2λ22q2λ22 · · ·

σ̃

σ2

σ1

Gen(ρ1)

e4 e4

e2 e5

....
e1

e4

e4 e5

e4
....

e4 e9

e4 e3

....
e4 e1

e4
....

e4

e1

....

....

σ3

σ4

σ̂

ρ2 = q1λ13q3λ33q3λ33 · · ·

Gen(ρ2)

Figure 4.6: Example folded allocation sequences generated by runs ρ1 and ρ2

of the HABA of Fig. 4.4.

4. λi ◦ φi = φi+1 ◦ λσi

5. ∀e ∈ Ei+1. (φi+1(e) =∞⇒ e ∈ cod(λσi))

6. I(q0) = (φ0(N), φ0 ◦ θ)

Condition 1 expresses that φi is injective except for entities imploded (mapped)
onto ∞. Condition 2 says that every entity in state qi represents an entity of
the state Ei of the allocation sequence. Condition 3 ensures that a bounded
state does not generate states of the allocation sequence with entities corre-
sponding to imploded ones. Condition 4 ensures that λσi is consistent to λi

84 Chapter 4 – Dynamic Allocation and Deallocations

E�E�EE�E�EE�E�EF�F�FF�F�FF�F�F G�G�GG�G�GG�G�GH�H�HH�H�HH�H�H I�I�II�I�II�I�IJ�J�JJ�J�JJ�J�J
...

....

Gen(ρ3) ρ3 = q1λ14q4λ44q4λ44 · · ·

....

....

....

Figure 4.7: Folded allocation sequences generated by run ρ3 of the HABA of
Fig. 4.4.

e1

e3

λ33

q3

λ13

e3

e1

e3

∞
λ44

λ12

e1

x

y

q1

q4

q2

λ22

Figure 4.8: A modification of the HABA in Fig. 4.4.

in the reallocation of corresponding entities. Condition 5 states that only old
entities may be imploded into ∞. Thus, the number of new entities in the al-
location sequence is the same as the number of new entities in the state of the
model. The last condition relates the initial valuation of the allocation triple
(σ,N, θ) to the initial valuation of HABA H.

Runs of a HABA are defined in the same way as for ABA. Let runs(H)
denote the set of runs of H. Using the definition of generator we can now
define the language of H as follows:

L(H) = {(σ,N, θ) | ∃ρ ∈ runs(H) : ρ generates (σ,N, θ)}. (4.6)

The set of allocation sequences generated by ρ ∈ runs(H) is denoted by

Gen(ρ) = {σ | ρ generates (σ,N, θ)}.

4.3 Automata for dynamic allocation and deallocation 85

Example 4.3.7. Figure 4.6 shows some sequences generated by the HABA in
Figure 4.4. In particular let

ρ1 = q1λ12q2λ22q2λ22 · · ·

ρ2 = q1λ13q3λ33q3λ33 · · ·

then σ1, σ2 ∈ Gen(ρ1) and σ3, σ4 ∈ Gen(ρ2). Again, note how the identity
of the entities is not relevant and in fact, in general, the set Gen(ρ1) contains
all the sequences isomorphic to σ1 (and/or σ2) and Gen(ρ2) contains all the
sequences isomorphic to σ3 (and/or σ4). We can abstract from the identity of
the entities and represent sequences by anonymous entities depicted just by a
circle8. This shows the “general pattern” followed by all isomorphic sequences.
For example in Figure 4.6, sequences in Gen(ρ1) follow the general pattern
represented by σ̃ while those in Gen(ρ2) follow the pattern of σ̂.

Figure 4.7 depicts the pattern of the sequences in Gen(ρ3) where

ρ3 = q1λ14q4λ44q4λ44 · · · .

The number of entities in Gen(ρ3) grows at every step.
Finally, consider the HABA in Figure 4.8 which is similar to the one in

Figure 4.4 except that the initial state q1 is now unbounded. In this case,
Gen(ρ1), Gen(ρ2) and Gen(ρ3) contain also those sequences with an arbitrary
number of (additional) imploded entities. This situation is represented in Fig-
ure 4.9 where, in order to stress the difference w.r.t. the bounded case, we
have repeated σ̃ from Figure 4.6. The two sequences σ1 and σ2 in the bottom
(of Fig. 4.9) are obtained by adding to E σ̃0 two and three imploded entities
(represented in the shadow subpart of the state) respectively. In this example,
imploded entities are preserved by every transition because q2 is unbounded
(recall condition λ(∞) = ∞ in the definition of ∞-reallocation and condition
on HABA transitions).

Reallocations and black-hole abstraction. HABA exploit two abstrac-
tion techniques in order to cope with several cases of infinite state-space ex-
plosion: reallocations (and therefore local names) and black hole abstraction.
Reallocations are a typical characteristic of HD-automata and have been proved
— in the work of Montanari and Pistore [83, 84, 90] — to be a powerful abstrac-
tion mechanism. They permit to collapse, into a single state, a set of states that
differ from one another only up to renaming of names. This technique results
to be very effective when applied to the semantics of history-dependent calculi
such as the π-calculus [82]. In that context for example, a state performing a
single input action would generate an infinite bunch of transitions connecting
the source state to an infinite number of target states whose only difference
is the fresh (new) name representing the value received as input9. However,

8In the metempsychosis metaphor this would correspond to looking only at the live being
while abstracting from which soul it has at any moment.

9We refer the reader to the aforementioned literature on HD-automata for further details
on the benefit of local names for history dependent calculi.

86 Chapter 4 – Dynamic Allocation and Deallocations

KLKLKLKKLKLKLKKLKLKLKKLKLKLKKLKLKLKKLKLKLKKLKLKLKKLKLKLKKLKLKLKKLKLKLKKLKLKLK
MLMLMMLMLMMLMLMMLMLMMLMLMMLMLMMLMLMMLMLMMLMLMMLMLMMLMLM

NLNLNLNNLNLNLNNLNLNLNNLNLNLNNLNLNLNNLNLNLNNLNLNLNNLNLNLNNLNLNLNNLNLNLNNLNLNLN
OLOLOOLOLOOLOLOOLOLOOLOLOOLOLOOLOLOOLOLOOLOLOOLOLOOLOLO

PLPLPPLPLPPLPLPPLPLPPLPLPPLPLPPLPLPPLPLPPLPLPPLPLPPLPLP
QLQLQQLQLQQLQLQQLQLQQLQLQQLQLQQLQLQQLQLQQLQLQQLQLQQLQLQ

RLRLRRLRLRRLRLRRLRLRRLRLRRLRLRRLRLRRLRLRRLRLRRLRLRRLRLR
SLSLSSLSLSSLSLSSLSLSSLSLSSLSLSSLSLSSLSLSSLSLSSLSLSSLSLS

TLTLTTLTLTTLTLTTLTLTTLTLTTLTLTTLTLTTLTLTTLTLTTLTLTTLTLT
ULULUULULUULULUULULUULULUULULUULULUULULUULULUULULUULULU

VLVLVLVVLVLVLVVLVLVLVVLVLVLVVLVLVLVVLVLVLVVLVLVLVVLVLVLVVLVLVLVVLVLVLVVLVLVLVVLVLVLVVLVLVLVVLVLVLV
WLWLWWLWLWWLWLWWLWLWWLWLWWLWLWWLWLWWLWLWWLWLWWLWLWWLWLWWLWLWWLWLWWLWLW

XLXLXLXXLXLXLXXLXLXLXXLXLXLXXLXLXLXXLXLXLXXLXLXLXXLXLXLXXLXLXLXXLXLXLXXLXLXLXXLXLXLXXLXLXLXXLXLXLX
YLYLYYLYLYYLYLYYLYLYYLYLYYLYLYYLYLYYLYLYYLYLYYLYLYYLYLYYLYLYYLYLYYLYLY

ZLZLZZLZLZZLZLZZLZLZZLZLZZLZLZZLZLZZLZLZZLZLZZLZLZZLZLZZLZLZZLZLZZLZLZ
[L[L[[L[L[[L[L[[L[L[[L[L[[L[L[[L[L[[L[L[[L[L[[L[L[[L[L[[L[L[[L[L[[L[L[

\L\L\\L\L\\L\L\\L\L\\L\L\\L\L\\L\L\\L\L\\L\L\\L\L\\L\L\\L\L\\L\L\\L\L\
]L]L]]L]L]]L]L]]L]L]]L]L]]L]L]]L]L]]L]L]]L]L]]L]L]]L]L]]L]L]]L]L]]L]L]

^L^L^^L^L^^L^L^^L^L^^L^L^^L^L^^L^L^^L^L^^L^L^^L^L^^L^L^^L^L^^L^L^^L^L^
_L_L__L_L__L_L__L_L__L_L__L_L__L_L__L_L__L_L__L_L__L_L__L_L__L_L__L_L_

`�`�``�`�``�`�`a�a�aa�a�aa�a�a

b�b�bb�b�bb�b�bc�c�cc�c�cc�c�c

d�d�dd�d�dd�d�de�e�ee�e�ee�e�e
....

....

..

..

ρ1 = q1λ12q2λ22q2λ22 · · ·

....σ̃

σ1

σ2

Gen(ρ1)

Figure 4.9: Folded allocation sequences generated for by HABA of Fig. 4.8
where bq1c.

what is probably more interesting for us is that the benefits derived by the
reallocation mechanism in the context of those calculi is also inherited in our
setting for the characterisation of the birth and death behaviour of entities. As
a very simple example, consider the sequence of states

q′3q
′′
3 q

′′′
3 · · · (4.7)

of the automaton in Figure 4.10. They only differ from one another by the
entity that is born and dies at every state. The birth and death behaviour in
this example can be translated into words as follows:

“there exists one entity that is always alive, and at every state a
new entity is born which is then deallocated in the next state”.

For the purpose of describing the previous behaviour it is not necessary to dis-
tinguish among different entity identities. For this particular example, without
reallocation the best we can do is to reduce the sequence in two distinct states
and two transitions, e.g,:

q′3 −→ q′′3 and q′′3 −→ q′3

4.3 Automata for dynamic allocation and deallocation 87

Using reallocations we can even avoid to distinguish between q′3 and q′′3 and
describe this behaviour with only one state and one transition, namely q3 and
q3 −→λ33

q3 of the automaton in Figure 4.4.
Although reallocations, as we have just seen, permit state-space reductions

in case of states equal up to renaming (i.e., isomorphic), this is still not enough
to achieve a finite-state representation in many situations. The black hole
abstraction helps in several of these cases, as for example, for some behaviours
involving the allocation of an unbounded number of entities. Consider, the
sequence of states:

q′4q
′′
4 q

′′′
4 q

iv
4 · · · (4.8)

of the automaton in Figure 4.10. These states are not isomorphic, therefore only
the application of the reallocation mechanism is not very effective here. Note
however, that the sequence (4.8) has a rather constant behaviour, namely only
one entity at a time is allocated and none of the alive entities die. In situations
like this, the black hole in combination with the reallocation mechanism permits
to collapse (4.8) in the single state and transition: q4 −→λ44

q4 of the automaton
in Figure 4.4.

4.3.3 The duality between ABA and HABA

The relationship between ABAs and HABAs strongly depends on the relation
between unfolded and folded allocation sequences discussed in Section 4.2.4.
More precisely, we will establish a connection between a HABA H and a class
of particular ABAs, called the expansions of H, whose elements accept L(H)
up to isomorphism.

Definition 4.3.8. For HABA H and ABA A, let ψ : QA → QH be surjective,
and (φq)q∈QA be a family of functions φq : Eq → E∞

ψ(q). Then:

• A-transition q1 −→ q2 expands H-transition q′1 −→λ q
′
2 if q′1 = ψ(q1), q

′
2 =

ψ(q2) and

(i) λ ◦ φq1 = φq2 � (Eq1 ∩ Eq2) and

(ii) |Eq′2\cod(λ)| = |Eq2\Eq1 |.

• A is an expansion of H if the following conditions are satisfied:

1. ∀e, e′ ∈ Eq . (φq(e) = φq(e
′) 6=∞⇒ e = e′);

2. Eψ(q) ⊆ cod(φq);

3. dψ(q)e ⇒ ∞ /∈ cod(φq);

4. for all q1 ∈ QA,

a) for all ψ(q1) −→λ q
′
2 there exists q1 −→ q2 that expands ψ(q1) −→λ q

′
2

b) for all q1 −→ q2 there exists λ such that q1 −→ q2 expands ψ(q1) −→λ

ψ(q2);

88 Chapter 4 – Dynamic Allocation and Deallocations

5. IA : q 7→

{
(φ−1
q (N), φ−1

q ◦ θ) if q′ = ψ(q) and IH(q′) = (N, θ)
undefined otherwise

6. FA = {{ψ(q)|q ∈ F}|F ∈ FH}.

The first three conditions are taken from Def. 4.3.6. Intuitively, these force
the number of entities in an expanded state to exceed the number of entities
of the original state, and require equality if the original state is bounded. Note
that transition q1 −→ q2 in the ABA must preserve the reallocation of q′1 −→λ q

′
2

(condition (i)) as well as the number of new entities (condition (ii)).
A HABA H whose initial states are all bounded has a single expansion

(up to isomorphism). On the contrary, if there exists at least an unbounded
initial state, then H has an infinite number of expansions, corresponding to the
possible number of imploded entities contained in the black hole. This effect
is similar to that of the set of sequences generated by a single run as we have
seen in Example4.3.7 and in Figure 4.9.

Some notions for folded and unfolded allocation sequences are lifted to ac-
cepted languages in the following way. For HABAs H1 and H2, let L(H1) ∼=
L(H2) iff for all (σ1, N1, θ1) ∈ L(H1) there exists a (σ2, N2, θ2) ∈ L(H2) such
that (σ1, N1, θ1) ∼= (σ2, N2, θ2) and vice versa. For ABA A accepting L(A), let

id(L(A)) = {(id (σ), N, θ) | (σ,N, θ) ∈ L(A)}. (4.9)

Note that id(L(A)) is the folded version of the unfolded language L(A). For
HABA H and ABA A let L(A) vfold L(H) iff for all (σu, Nu, θu) ∈ L(A) there
exists (σf , Nf , θf) ∈ L(H) such that (σu, Nu, θu) vfold (σf , Nf , θf). Similarly,
L(A) wfold L(H) iff for all (σf , Nf , θf) ∈ L(H) there exists (σu, Nu, θu) ∈ L(A)
such that (σu, Nu, θu) vfold (σf , Nf , θf). Then:

Lemma 4.3.9. For HABA H and any expansion Exp(H):

(a) L(Exp(H)) wfold L(H) and

(b) L(Exp(H)) vfold L(H).

Proof. See Appendix A.2.

Hence, L(Exp(H)) corresponds precisely to the unfolded version of L(H).
A consequence of the previous lemma, as well as an alternative way to express
it, is stated by:

Theorem 4.3.10. For HABA H and any expansion Exp(H):

L(H) ∼= id(L(Exp(H))).

Proof. See Appendix A.2.

The previous theorem will be useful for proving the equivalence of the con-
crete and symbolic operational semantics of the programming language we
define in Section 4.4.

4.4 Programming allocation and deallocation 89

....
e3

....

e1
e1

e2

e1e1
e4

e6

e5 e6

e5

e7

e5

e6
e7
e8

e2

e1

e2

e5

Exp(H)

q′3 q′′3
q′′′3

q′4

q′′4
q′′′4

q′2 q′′2
q′1

qiv
4

Figure 4.10: The infinite-state expansion of the HABA in Fig. 4.4.

Definition 4.3.11. Given a HABA H and an A``TL-formula φ we say that

• φ is H-satisfiable if there exists (σ,N, θ) ∈ L(H) such that σ,N, θ |= φ;

• φ is H-valid if for all (σ,N, θ) ∈ L(H) : σ,N, θ |= φ.

For ABA A a similar definition for A-satisfiability and A-validity can be
given. From the previous definition it follows that φ is H-valid (A-valid) if and
only if ¬φ is not H-satisfiable (A-satisfiable).

As stated in the following corollary, from Theorem 4.3.10 it follows that a
HABA H and any of its expansions satisfy the same set of A``TL formulae.

Corollary 4.3.12. For anyA``TL-formula φ, HABAH and expansionExp(H):

φ is H-satisfiable ⇔ φ is Exp(H)-satisfiable.

Example 4.3.13. Figure 4.10 shows the (infinite) expansion of the HABA in
Figure 4.4. The HABA in Figure 4.8 has an infinite number of expansions due
to its unbounded initial state. The expansion shown in Figure 4.11 corresponds
to the case where there are two entities in the black hole. These entities are
depicted in a shadow area to be easily distinguished from the others.

4.4 Programming allocation and deallocation

This section introduces a simple programming language L capturing the essence
of allocation and deallocation. It is used for providing an intuition about
the setup and the sort of behaviour that can be modelled by HABAs. Two
semantics for L are defined, a concrete semantics with ABA as underlying
model, and a symbolic semantics using HABA. The relation between these
semantics is shown to correspond to expansion in the sense of Def. 4.3.8.

90 Chapter 4 – Dynamic Allocation and Deallocations

fgfgfgfgffgfgfgfgffgfgfgfgffgfgfgfgffgfgfgfgffgfgfgfgffgfgfgfgffgfgfgfgffgfgfgfgfhghghghghhghghghghhghghghghhghghghghhghghghghhghghghghhghghghghhghghghghhghghghgh igigigigigiigigigigigiigigigigigiigigigigigiigigigigigiigigigigigiigigigigigiigigigigigiigigigigigijgjgjgjgjgjjgjgjgjgjgjjgjgjgjgjgjjgjgjgjgjgjjgjgjgjgjgjjgjgjgjgjgjjgjgjgjgjgjjgjgjgjgjgjjgjgjgjgjgj

kgkgkgkgkkgkgkgkgkkgkgkgkgkkgkgkgkgkkgkgkgkgkkgkgkgkgkkgkgkgkgkkgkgkgkgkkgkgkgkgklglglglgllglglglgllglglglgllglglglgllglglglgllglglglgllglglglgllglglglgllglglglgl mgmgmgmgmgmmgmgmgmgmgmmgmgmgmgmgmmgmgmgmgmgmmgmgmgmgmgmmgmgmgmgmgmmgmgmgmgmgmmgmgmgmgmgmmgmgmgmgmgmngngngngngnngngngngngnngngngngngnngngngngngnngngngngngnngngngngngnngngngngngnngngngngngnngngngngngn ogogogogoogogogogoogogogogoogogogogoogogogogoogogogogoogogogogoogogogogoogogogogopgpgpgpgppgpgpgpgppgpgpgpgppgpgpgpgppgpgpgpgppgpgpgpgppgpgpgpgppgpgpgpgppgpgpgpgp
qgqgqgqgqqgqgqgqgqqgqgqgqgqqgqgqgqgqqgqgqgqgqqgqgqgqgqqgqgqgqgqqgqgqgqgqqgqgqgqgqrgrgrgrgrrgrgrgrgrrgrgrgrgrrgrgrgrgrrgrgrgrgrrgrgrgrgrrgrgrgrgrrgrgrgrgrrgrgrgrgr

sgsgsgsgssgsgsgsgssgsgsgsgssgsgsgsgssgsgsgsgssgsgsgsgssgsgsgsgssgsgsgsgssgsgsgsgstgtgtgtgttgtgtgtgttgtgtgtgttgtgtgtgttgtgtgtgttgtgtgtgttgtgtgtgttgtgtgtgttgtgtgtgt uguguguguguuguguguguguuguguguguguuguguguguguuguguguguguuguguguguguuguguguguguuguguguguguuguguguguguvgvgvgvgvgvvgvgvgvgvgvvgvgvgvgvgvvgvgvgvgvgvvgvgvgvgvgvvgvgvgvgvgvvgvgvgvgvgvvgvgvgvgvgvvgvgvgvgvgv
wgwgwgwgwwgwgwgwgwwgwgwgwgwwgwgwgwgwwgwgwgwgwwgwgwgwgwwgwgwgwgwwgwgwgwgwwgwgwgwgwwgwgwgwgwxgxgxgxgxxgxgxgxgxxgxgxgxgxxgxgxgxgxxgxgxgxgxxgxgxgxgxxgxgxgxgxxgxgxgxgxxgxgxgxgxxgxgxgxgx

ygygygygyygygygygyygygygygyygygygygyygygygygyygygygygyygygygygyygygygygyygygygygyzgzgzgzgzzgzgzgzgzzgzgzgzgzzgzgzgzgzzgzgzgzgzzgzgzgzgzzgzgzgzgzzgzgzgzgzzgzgzgzgz e1
e2

e1
e2

....

e2

e1
e3e4

e1

e5

e5
e6

e5
e6
e7

e5
e6
e7
e8

e1

Exp(H)

Figure 4.11: An infinite-state expansion of the HABA in Fig. 4.8.

4.4.1 Syntax

For PVar a set of program variables with v, vi ∈ PVar and PVar∩LVar = ∅,
the set of statements of L is given by:

(p ∈)L ::= decl v1, . . . , vn : (s1 ‖ · · · ‖ sk)

(s ∈)Stat ::= new(v) | del(v) | v := v | skip | s; s | if b then s else s fi

| while b do s od

(b ∈)Bexp ::= v = v | b ∨ b | ¬b

A program p is thus a parallel composition of a finite number of statements
preceded by the declaration of a finite number of global variables.

Informal semantics of L. new(v) creates (i.e., allocates) a new entity that
will be referred to by the program variable v. The old value of v is lost. Thus,
if v is the only variable that refers to entity e, say, then after the execution of
new(v), e cannot be referenced anymore. In particular, e cannot be deallocated
anymore. In other words, there is no automatic garbage collection10. del(v)
destroys (i.e., deallocates) the entity associated to v, and makes v undefined.
The assignment v := w passes the reference held by w (if any) to v. Again,
the entity v was referring to might become unreferenced (for ever). Sequential
composition, while loop, skip, and conditional statement have the standard
interpretation. For the sake of simplicity, new and del create and destroy,

10In Chapter 5 we will study a model with garbage collection.

4.4 Programming allocation and deallocation 91

{ { { { {{ { { { {{ { { { {{ { { { {{ { { { {| | | | || | | | || | | | || | | | || | | | |
Buffer ConsumerProducer

Figure 4.12: The buffer system.

respectively, a single entity only; generalisations such as

new(v1, . . . , vn)

del(v1, . . . , vn)

in which several entities are considered simultaneously can be added in a
straightforward manner.

Example 4.4.1. The following program PC is an implementation of a pro-
ducer/consumer system depicted in Figure 4.12. A producer process creates
new entities and stores them in the first place on the left side of a shared buffer.
A buffer process moves these entities entities from the left to the right. The
consumer process consumes entities in the first position on the right of the
buffer11.

PC ≡ decl v1, v2, w : (Prod ‖ Buff2 ‖ Cons) where
Prod ≡ while tt do

if (v1 dead) then new(v1) else skip fi
od

Buff2 ≡ while tt do
if (v1 alive) then v2 := v1; v1 := w else skip fi

od
Cons ≡ while tt do

if (v2 alive) then del(v2) else skip fi
od

For this particular instance of the system, the component Buff2 implements a
process handling a two-place buffer consisting of the variable v1 (first position)
and v2 (second position). The producer Prod produces a new entity when the
first place of the buffer v1 is empty (i.e. v1 is dead). An entity in the second
position of the buffer is consumed by the consumer Cons . Note that in the
if-then-else-fi statement in Buff2 , using v2 := v1; del(v1) would be wrong as the
entity referenced by v1 and v2 would then be deallocated. The statement, v1 :=
w deletes the reference to v1 entity, since w is assumed to be undefined (and

11For the boolean variables, we write v alive for v = v and v dead for v 6= v (cf. Proposi-
tion 4.2.4).

92 Chapter 4 – Dynamic Allocation and Deallocations

therefore it will remain constantly undefined). It is not difficult to see that the
proposed implementation suffers from memory leak as Buff2 may overwrite v2
before it is actually consumed. Absence of memory leak can be easily expressed
by the formula:

G(∀x.Fx dead) (4.10)

essentially saying: a produced entity is always eventually consumed. Using the
operational semantics defined in Section 4.4.3 and the model checking algorithm
of Section 4.5 it is possible to automatically verify that (4.10) is refuted by some
computations of PC (or alternatively its negation can be satisfied).

An improved implementation uses w as temporary variable in order to pass
v1 to v2:

PC ′ ≡ decl v1, v2, w : (Prod ‖ Buff2
′ ‖ Cons) where

Buff2
′ ≡ while tt do

if (v1 alive) then w := v1; v1 := v2; v2 := w else skip fi
od

and Prod , Cons defined as above. The implementation PC ′ improves PC since
the memory leak problem has been removed, In fact, the assignment v1 := v2
is used to make v1 undefined. In case v2 points to an entity, its reference is not
lost and goes to v1 that since remains alive block Prod . On the other hand, the
entity v1 holds at the beginning of the if statement is not lost since its reference
is given temporarily to w. Therefore (4.10) is valid in PC ′. Nevertheless, by
looking more carefully, we can observe that PC ′ does not always remove entities
from the buffer in the same order in which they are introduced — that as a
matter of fact — is a desirable property if we want to implement a FIFO queue.
Exploiting the fact that in L only one entity at a time can be created, and the
computation starts with an empty set of live entities, we can express for PC ′

the FIFO policy by the A``TL-formula:

G(∀x.XF(∃y.y new⇒ y aliveUx dead)) (4.11)

that in words translates to: entities are always consumed in the same order they
are produced. To repair the FIFO order we propose yet another implementation
for the buffer system:

PC ′′ ≡ decl v1, v2, w : (Prod ‖ Buff2
′′ ‖ Cons) where

Buff2
′′ ≡ while tt do

if (v1 alive ∧ v2 dead) then
w := v1; v1 := v2; v2 := w

else skip fi
od

Again, v1 := v2 deletes only the reference to v1 entity that can be then moved
to v2 via w. The correctness of the solution comes from the guard of the
conditional statement. In fact, only if the second position of the buffer is
empty the entity pointed to by v1 is shifted to v2.

4.4 Programming allocation and deallocation 93

Some other example properties expressible in A``TLfor the program PC ′′

are12:

• An entity in the buffer is not consumed before the insertion of another one
(this implies also that the buffer is never empty): G∀x.(x alive U (∃y.x 6=
y)).

• The buffer will be always eventually full: GF(∀x.∀y.∀z.(x = y ∨ x =
z ∨ y = z)).

Example 4.4.2. The following program, where g(i) = (i+1) mod 4, models
the implementation of a naive solution to the dining philosopher problem:

DPhil ≡ decl v1, v2, v3, v4 : Init ; (Ph1 ‖ Ph2 ‖ Ph3 ‖ Ph4) where
Ph i ≡ while tt do

while vi dead do skip od
del(vi);
while vg(i) dead do skip od
del(vg(i));
new(vi);
new(vg(i))

od
Init ≡ new(v1); new(v2); new(v3); new(v1)

The variables vi and vg(i) represent the left and the right chopstick of philoso-
pher Phi, respectively. If vi and vg(i) are defined, then the chopsticks are on
the table. Taking the chopsticks from the table is represented by destroying
the corresponding entities, while putting the chopsticks back on the table is
modelled by creating new entities. Some desirable A``TL properties of this
program, are:

• No memory leak (i.e. the number of entities never exceeds four):

G(∀x1.∀x2.∀x3.∀x4.∀x5.(x1 = x2 ∨ x1 = x3 ∨ x1 = x4 ∨ x1 = x5∨
x2 = x3 ∨ x2 = x4 ∨ x2 = x5 ∨ x3 = x4 ∨ x3 = x5 ∨ x4 = x5).

• Eventually the system deadlocks:

FG(∀x.x dead).

• Eventually two philosophers will eat at the same time:

F(∀x.x dead ∧ FX∃x.x new).

12The specifications are correct because of the absence of memory leak in PC ′′.

94 Chapter 4 – Dynamic Allocation and Deallocations

The last two properties make the assumption that it has been already checked
the absence of memory leak.

Although some interesting problems can be programmed, it is obvious that
L is rather simple. Other constructs like wait or some syntactic sugar like re-
peat may be easily included, without extending the language in an essential
way. In Chapter 5 we will define an extension of L that deals with a simpli-
fied mechanism of navigation and therefore permits to express more involved
examples.

4.4.2 Concrete semantics

A concrete semantics of our example language is given in terms of ABA. Let
Par denote the compound statements, i.e., r(∈ Par) ::= s | r ‖ s.

Definition 4.4.3 (concrete automaton Ap). The concrete semantics of
p = decl v1, . . . , vn : (s1 ‖ · · · ‖ sk) is the ABA Ap = 〈∅, Q,E,→, I,F〉 where

• Q ⊆ Par × 2Ent × (PVar ⇀ Ent), where for state q = (r, Eq , γq) ∈ Q, r
is the compound statement to be executed, Eq is the set of entities alive
and γq maps program variables to Eq (with dom(γq) = {v1, . . . , vn}; if γq
is undefined on v we write γq(v) = ⊥);

• E(r, E′, γ) = E′;

• −→ ⊆ Q×Q is the smallest relation satisfying the rules in Table 4.4.2;

• dom(I) = {(s1 ‖ · · · ‖ sk,∅,∅)} and I(s1 ‖ · · · ‖ sk,∅,∅) = (∅,∅);

• let

F̂i = {(s′1 ‖ · · · ‖ s
′
k, E, γ) ∈ Q | s

′
i = skip ∨ s′i = while b do s od; s′′}

F̃i = {(s′1 ‖ · · · ‖ s
′
k, E, γ) ∈ Q | s

′
i = skip ∨ s′i = s; while b do s od; s′′}

then F = {F̂i | 0 < i 6 k} ∪ {F̃i | 0 < i 6 k}.

A few remarks are in order. Ap has a single initial state s1 ‖ · · · ‖ sk. The
set of accept states for the i-th sequential component consists of all states in
which the component has either terminated (si = skip) or is processing a loop
(which could be infinite). The combination of sets F̃i and F̂i guarantees the
progress of the component i.

Definition 4.4.4. The semantics of the boolean expressions is given by the
function V : Bexp× (PVar ⇀ Ent)→ B defined by

V(v = w)(γ) =

{
tt if v, w ∈ dom(γ) and γ(v) = γ(w)
ff otherwise

V(b1 ∨ b2)(γ) = V(b1)(γ) ∨ V(b2)(γ)
V(¬b)(γ) = ¬V(b)(γ).

4.4 Programming allocation and deallocation 95

(ASGN-c)
v := w,E, γ −→ skip, E, γ{γ(w)/v}

(NEW-c)
new(v), E, γ −→ skip, E ∪ {e}, γ{e/v}

e = min(Ent\E)

(DEL-c)
del(v), E, γ −→ skip, E\{γ(v)}, γ{⊥/v′}

v′ ∈ γ−1(γ(v))

(IF1-c)
V(b)(γ)

if b then s1 else s2 fi, E, γ −→ s1, E, γ

(IF2-c)
¬V(b)(γ)

if b then s1 else s2 fi, E, γ −→ s2, E, γ

(WHILE-c)
while b do s od, E, γ −→ if b then s; while b do s od else skip fi, E, γ

(SEQ1-c)
s1, E, γ −→ s′1, E

′, γ′

s1; s2, E, γ −→ s′1; s2, E
′, γ′

(SEQ2-c) skip; s2, E, γ −→ s2, E, γ

(PAR1-c)
1
}
j
}
k ∧ sj , E, γ −→ s′j , E

′, γ′

s1 ‖ · · · ‖ sj ‖ · · · ‖ sk, E, γ −→ s1 ‖ · · · ‖ s′j ‖ · · · ‖ sk, E′, γ′

(PAR2-c)
skip ‖ · · · ‖ skip, E, γ −→ skip ‖ · · · ‖ skip, E, γ

Table 4.3: Operational rules for concrete semantics.

We assume w.l.o.g. that the set Ent is totally ordered; this is convenient
for selecting a fresh entity in a deterministic way (cf. the rule NEW-conc in
Table 4.4.2). Some brief explanation of the rules of the concrete semantics
follows:

• (ASGN-c) An assignment v := w is performed by changing the reference
of the variable v to γ(w). After the execution, the assignment statement
is replaced by skip that is either consumed in the context of a sequential
composition by rule (SEQ2-c) or is blocked. This general pattern in fol-
lowed also by rules (NEW-c) and (DEL-c). Note that there does not exist
a rule for skip.

• (NEW-c) The reference of the first (fresh) entity e available from Ent
according to the total order is assigned to v.

• (DEL-c) Entity γ(v) is deallocated and every reference to this entity is

96 Chapter 4 – Dynamic Allocation and Deallocations

.

..

.

wdel(v2)

v1 v2 w

· · ·

· · ·

· · ·

· · ·

v1 v2 wdel(v2)

v1 v2 w

new(v1)

v1 := w

v2 := v1

v2

w v1 v2 w

e1

v1 v2 w

e1

del(v2)

del(v2)

v1 v2 w

v1 v2 w

e1

v1

new(v1)

PC

PC

PC PC

PC

e1e2 e2
e1

e1
e2

e1

e1
e3

v1 := w

e2

e2e3

e3

PC

e1e2

· · ·wv2v1
del(v2)

del(v2)
· · ·

del(v2)
· · ·

del(v2)

· · ·

q q′

v2 := v1

new(v1)

v1 := w

v2 := v1

PC

v2

Prod ‖
v1 := w;Buff2 ‖ Cons

Prod ‖
v1 := w;Buff2 ‖ Cons

Prod ‖
v1 := w;Buff2 ‖ Cons

v1

Figure 4.13: Initial sequence of states APC of Example 4.4.1 that makes the
automaton infinite.

cancelled.

• (IF1-c)/(IF2-c)/(WHILE-c) Straightforward.

• (SEQ1-c)/(SEQ2-c) In a sequential composition, when the first statement
is reduced to a skip statement, it is consumed.

• (PAR1-c) If one of the components of the compound statement performs

4.4 Programming allocation and deallocation 97

a step, the compound statement can do so.

• (PAR2-c) A self-loop in an accept state with a terminated compound
statement ensures that, in a run, it is visited infinitely many times.

Example 4.4.5. The ABA in Figure 4.13 shows a sub-part of the automaton
APC representing the concrete semantics of the erroneous implementation PC
described in Example 4.4.1. The figure focuses on the part of the automaton
corresponding to a computation that makes APC infinite because of memory
leakage. In fact, following transitions depicted with a solid arrow, the number
of non-reachable entities grows unboundedly.

4.4.3 Symbolic semantics

The semantics defined in the previous section has the disadvantage that mod-
els may become infinite due to an unbounded number of entity creations (cf.
Example 4.4.5). In order to circumvent this problem we define a symbolic se-
mantics of L in terms of HABA, that (later on) will be shown to be equivalent.
The main distinction with the concrete semantics is the treatment of the asso-
ciation of program variables to entities. Here instead, entities are represented
by a partial partitioning of a subset of PVar, i.e., the set E of entities is of
the form {X1, . . . , Xn} with Xi ⊆ PVar and Xi ∩ Xj = ∅ (for i 6= j). Note
that we do not require

⋃
iXi = PVar which would make it a full partitioning.

Variable v is defined if and only if v ∈ Xi for some i. Then, v refers to the en-
tity represented by the set Xi. Otherwise, v is undefined. Using this approach,
there is no need to represent (in a state) a mapping from the set of program
variables onto the entities.

Example 4.4.6. Consider Figure 4.13. In the symbolic semantics, state q will
be represented by:

{{v1}, {v2}}

because v1 and v2 are aliases. Whereas state q′ will be represented as

{{v1, v2}}

because v1 and v2 are no longer aliases.

This kind of representation is possible only because of the use of reallocation
that make entity identities not relevant. In the concrete semantics this would
be impossible due to the global notion of entity identity.

Definition 4.4.7 (symbolic automaton Hp). The symbolic semantics of
p = decl v1, . . . , vn : (s1 ‖ · · · ‖ sk) is the HABA Hp = 〈∅, Q,E,→, I,F〉 where

• Q ⊆ Par×22PVar

, i.e., a state q = (r, E) consists of a compound statement
and a set of entities; we have bqc iff ∅ ∈ E (i.e., we represent the black
hole by ∅).

98 Chapter 4 – Dynamic Allocation and Deallocations

(ASGN-s)
v := w,E −→λ skip, {Xi\{v}|w /∈ Xi} ∪ {Xi ∪ {v}|w ∈ Xi}

λ : Xi 7→

~
Xi\{v} if w /∈ Xi
Xi ∪ {v} otherwise

(NEW-s)
new(v), E −→λ skip, {Xi\{v}|Xi ∈ E} ∪ {{v}}

λ(Xi) = Xi\{v}

(DEL-s)
v ∈ Xi

del(v), E −→λ skip, (E\{Xi})
λ : Xj 7→

~
Xj if j 6= i
⊥ otherwise

(IF1-s)
V(b)(E)

if b then s1 else s2 fi, E −→id s1, E

(IF2-s)
¬V(b)(E)

if b then s1 else s2 fi, E −→id s2, E

(WHILE-s)
while b do s od, E −→id if b then s; while b do s od else skip fi, E

(SEQ1-s)
s1, E −→λ s

′
1, E

′

s1; s2, E −→λ s
′
1; s2, E

′

(SEQ2-s) skip; s2, E −→id s2, E

(PAR1-s)
1 � j � k ∧ sj , E −→λ s

′
j , E

′

s1 ‖ · · · ‖ sj ‖ · · · ‖ sk, E −→λ s1 ‖ · · · ‖ s′j ‖ · · · ‖ sk, E′

(PAR2-s)
skip ‖ · · · ‖ skip, E −→id skip ‖ · · · ‖ skip, E

Table 4.4: Operational rules for symbolic semantics

• E(r, E′) = E′\{∅};

• −→ is the smallest relation defined by the rules in Table 4.4.3 such that
for r, E −→λ r

′, E′ we have ∅ ∈ E ⇒ ∅ ∈ dom(λ).

and I and F are defined in the same way as for the concrete semantics.

The condition on ∅ in the definition of −→ can be seen as a kind of “preser-
vation law” of the black hole. In fact, once a state implodes into an unbounded
one, the black hole generated by this implosion will last forever. Note that
in the definition of HABA (Def. 4.3.4) this is not always the case. Whenever
entity Xi is not referenced by any program variable, the state will become un-
bounded. Entity Xi will then be mapped by λ onto ∅, which can be viewed as
a “black hole” collecting every non-referenced entity. These entities share the

4.4 Programming allocation and deallocation 99

property that they cannot be deallocated anymore, thus they will have exactly
the same future, namely they will be “floating” in the black hole ad infinitum13.

Some explanations on the rules of the symbolic semantics are in order:

• (NEW-s) If v is the only variable having a reference to an entity Xi (i.e.,
Xi = {v}), the state becomes unbounded (if this is not already the case)
and the black hole ∅ implodes Xi since it cannot be referred to anymore.
In this case, E′ = E ∪{∅}, i.e., the sets E and E ′ have the same entities.
However,Xi represents a new entity in the target state since Xi /∈ cod(λ).

If v is either undefined or there exists another variable denoting v’s entity,
a new entity {v} is created. λ maps every entity onto itself.

• (ASGN-s) If v is defined but is the only variable that has a reference
to its entity, the assignment causes the loss of the reference of the entity
denoted by v. Therefore, this entity is imploded onto ∅. If w is undefined
also v becomes undefined. Regardless whether the state is bounded or
not, after the transition the state becomes unbounded because ∅ ∈ E ′.

If there is another variable denoting v’s entity or v is undefined then v’s
reference is changed.

• (DEL-s) Straightforward. The entity Xi associated with v is removed
from the live entities.

(IF1-s), (IF2-s), (WHILE-s), (SEQ1-s), (SEQ2-s), (PAR1-s) and (PAR2-s) are sim-
ilar to the corresponding rules of the concrete semantics and are not explained
further.

Example 4.4.8. Consider the program PC of Example 4.4.1 that — as we have
already observed in Example 4.4.5 — has an infinite-state concrete semantics
due to memory leak. Figure 4.14 depicts the corresponding symbolic semantics
HPC of PC. Note how, by using black-hole abstraction and reallocations, the
automaton is finite-state.

13This property enjoyed by imploded entities is only a choice in the design of this particular
example semantics. It is neither an inherent characteristic of L nor of HABAs. Here the
choice is supported by the fact that we want to reason — among other properties of the
system — about memory leak. Moving to an operational semantics with automatic garbage
collector is straightforward. For example, this could be done by changing the condition on
the black-hole imposed in the transitions. It could be substituted by � ∈ E ⇒ � /∈ dom(λ)
which would correspond to a very eager garbage collector that runs at every transition.
Alternatively, the simple operational rule

bqc −→id dqe

could be added that corresponds to the possibility for the system in an unbounded state to
choose nondeterministically between the execution of the statement or the execution of the
garbage collector. This last choice would be more coherent with the real existing systems
using garbage collection. In Chapter 5 we take the opposite direction and we define an
operational semantics with automatic garbage collection.

100 Chapter 4 – Dynamic Allocation and Deallocations

PC

v1 := wv2 := v1

new(v1)

new(v1)

del(v2)

new(v1)

v2 := v1

del(v2)

del(v2)

{v1}� PC

PC

PC

�

PC

new(v1)

�

v2 := v1

{v1}

{v2}

�

�
{v1}

{v1}

PC

{v1}{v2}

v1 := w

v2 := v1

del(v2)

del(v2)

del(v2)

v1 := w

v1 := w

PC

PC

{v1 , v2}{v2}

{v2} {v1, v2}

�
�

�

{v1}

v1 := w
new(v1)

v1 := w

v1 := w; Buff2

Prod ‖ Cons

v1 := w; Buff2

Prod ‖ Cons

v1 := w; Buff2

Prod ‖ Cons

v1 := w;Buff2

Prod ‖ Cons

v1 := w; Buff2

Prod ‖ Cons�

v1 := w; Buff2

Prod ‖ Cons

Figure 4.14: Symbolic semantics of PC of Example 4.4.1.

4.5 Model checking A``TL 101

4.4.4 Relating the concrete and symbolic semantics

The theory developed in Section 4.3.3 can be applied here in order to com-
pare the concrete and the symbolic semantic of a given program p w.r.t. the
languages accepted by the two automata and, consequently, the set of A``TL-
formulae satisfied. In particular, the next theorem relates Ap and Hp.

Theorem 4.4.9. For any p ∈ L: Ap is an expansion of Hp.

Proof. See Appendix A.3.

It thus follows that Hp and Ap are equivalent: due to Theorem 4.3.10, they
accept the same language up to isomorphism and therefore (by Corollary 4.3.12)
they satisfy the same A``TL-formulae. Theorem 4.4.9 increases its relevance
— at least for the application of model checking techniques — when combined
with the essential property of the symbolic semantics ensured by the next result:

Theorem 4.4.10. For any p ∈ L: Hp is finite state.

Proof. See Appendix A.3.

More precisely, for Bk the number of partitions of a set of k elements, |smax|
the size of the longest sequential statement in p and m the number of sequential
components in p, we have:

|QHp | 6 |smax|
m ·

1 + 2 ·

|PVar|∑

k=1

(
|PVar|

k

)
Bk

 .

Bk is known as the Bell number and has a non-trivial asymptotic behaviour [87],
nevertheless, O(2n) < O(Bn) < O(n!). Thus, QHp is exponential in the num-
ber of sequential components m in p. Whereas if m is constant then |QHp |

can be approximated by O(2|PVar| · B|PVar|). As the symbolic semantics is
deterministic, the number of transitions is of the order O(m · |QHp |).

Although the result given in this section holds for a simple language, we
believe that it may be extended to more interesting programming languages.
For instance, L may be enhanced, in order to model the precise mechanism of
creation and destruction of objects in object-oriented programming languages.
In Chapter 5 we will extend L in order to deal with dynamic references.

4.5 Model checking A``TL

In this section, we define an algorithm for model-checking A``TL-formulae
against a HABA. The algorithm extends the tableau method for LTL — intro-
duced for the first time in [77] and summarised in Section 2.1.6 — to A``TL.

We will evaluate A``TL-formulae on states of a HABA by mapping the free
variables of the formula to entities of the state. It should be clear that, in prin-
ciple, any such mapping resolves all basic propositions: a freshness proposition

102 Chapter 4 – Dynamic Allocation and Deallocations

x new holds if and only if x is mapped to an entity that is new in the state,
and an entity equation x = y holds if and only if x and y are mapped to the
same entity. In turn, the basic propositions determine the validity of arbitrary
formulae.

There are, however, two obstacles to this principle, the first of which is
slight and the other more difficult to overcome:

• It is not always uniquely determined whether or not an entity is fresh in a
state. Our model allows states in which a given entity is considered fresh
when arriving by one incoming transition (since it is not in the codomain
of the reallocation associated with that transition), but not when arriving
by another (since according to the reallocation, the entity is the image of
an entity in the previous state).

This obstacle is dealt with by duplicating the states where such an am-
biguity exists. In general, there will therefore be as many duplicates of a
given state as it has incoming transitions with distinct codomains.

• For variables (of the formula in question) that are mapped to the black
hole, entity equations are not resolved, since it is not clear whether the
variables are mapped to distinct entities that have imploded into the
black hole, or to the same one.

To deal with this obstacle, we introduce an intermediate layer in the
evaluation of the formula on the state. This additional layer consists of
a partial partitioning of the free variables; that is, a set of nonempty,
disjoint subsets of the set of all free variables. An entity equation is then
resolved by the question whether the equated variables are in the same
partition. It is the partitions, rather than the individual variables, that
are mapped to the entities of the state.

4.5.1 Duplication

The first aforementioned problem is illustrated by the HABA H in Figure 4.15.
Here, entity e3 in state q2 is old if transition q1 −→λ12

q2 is taken. On the
contrary, e3 is new in q2 if we consider the transition q3 −→λ32

q2 (where λ32 =
∅). Furthermore, in the initial state q3 the entity e2 is new. However, it
becomes old after the transition q4 −→λ43

q3.

Definition 4.5.1. For a HABA H = 〈X,Q,E,→, I,F〉, the duplication of H
is the HABA Hδ = 〈X,Q′, E′,→′, I ′,F ′〉 where

• Q′ = {(q, Eq\cod(λ)) | q ∈ Q ∧ q′ −→λ q} ∪ {(q,N) | I(q) = (N, θ)};

• E′(q,M) = Eq ;

• −→′ is defined by the following rule:

q −→λ q
′

(q,M) −→′
λ (q′, Eq′\cod(λ))

4.5 Model checking A``TL 103

������������������������������
e1

e2

e3

e3

e2

λ24

q4

q2
q1

q3

λ43

H

λ12

Figure 4.15: Ambiguity of the “new” entities: e3 can be either new or old
depending from the incoming transition.

������������������������������
e2 e3 e2

e3
e1

e2

λ24

λ24

(q3, {e2}) (q2, {e3}) (q3, �)

(q4, �)
λ12

(q1, �) (q2, �)

Hδ

λ43

e3

Figure 4.16: The duplication Hδ of the HABA in Fig. 4.15.

• I ′ : (q,N) 7→

{
(N, θ) if I(q) = (N, θ)
undefined otherwise

• F ′ = {{(q,M) ∈ Q′ | q ∈ Fi} | Fi ∈ F}.

The set of variables X is unchanged. States are pairs (q,M) where M ⊆ Eq
is the subset of entities that are considered new in (q,M). Initial states are
defined according to initial valuations in I . In the definition of the transition
relation, for every q −→λ q

′ in H, a corresponding transition (q,M) −→λ (q′,M ′)
in Hδ is defined, provided that M ′ corresponds precisely to the set of entities
that are new according to λ, that is M ′ = Eq′\cod(λ). The set F ′ contains
those states resulting by the duplication of the original accept states.

Example 4.5.2. The duplication Hδ of the HABA in Figure 4.15 is shown in
Figure 4.16. The original state q2 is duplicated in (q2,∅) (where e3 is old) and

104 Chapter 4 – Dynamic Allocation and Deallocations

(q2, {e3}) (where e3 is new). The initial state (q3, {e2}) is explicitly added in
order to have e2 new.

A HABA and its duplication are equivalent in the sense of the following
lemma.

Lemma 4.5.3. L(H) = L(Hδ).

Proof. See Appendix A.4.

Assumptions. In the remainder of this chapter as well as in Appendix A
where the proofs are reported, we assume that the necessary duplication has
been carried out already: that is, we will assume that a state q ∈ Q is a pair
where the second component is a set Nq ⊆ Eq that contains the entities that
are new in q; i.e., such that

• q′ −→λ q implies Eq\cod(λ) = Nq

• I(q) = (N, θ) implies N = Nq.

Note that, we can henceforth assume that I has just θ as its image — the
component N is now uniquely associated with q.

Another assumption needed below is that every quantified variable actually
appears free in the sub-formula; that is, we only consider formulae ∃x.φ for
which x ∈ fv(φ). Note that this imposes no real restriction, since ∃x.φ is
equivalent to ∃x.(x alive ∧ φ).

Before we can present the model checking construction, we have to introduce
a number of auxiliary notions.

4.5.2 Valuations

A valuation of a formula in a given state is an interpretation of the free variables
of the formula as entities of the state. Such an interpretation establishes the
validity of at least the atomic propositions within the formula, i.e., the sub-
formulae of the form x = y (which holds if x and y are interpreted as the same
entity) and x new (which holds if x is interpreted as a fresh entity). Because
we also want to allow the black hole as an interpretation, though, it is not
enough to have a simple mapping from variables to entities: such a mapping
still would not reveal whether two entities mapped to the black hole are mapped
to the same instance imploded into the black hole. Therefore we first collect
the variables into disjoint sets, the elements of which are considered equal, and
map these sets of variables to entities.

Definition 4.5.4 (Valuations). Let E ⊆ Ent∞. An E-valuation is a triple
(φ,Ξ,Θ) where φ is an A``TL-formula and

• Ξ is a partial partitioning of fv(φ); that is, Ξ = {X1, . . . , Xn} such that
∅ ⊂ Xi ⊆ fv (φ) for 1 6 i 6 n and Xi ∩Xj = ∅ for 1 6 i < j 6 n (but
not necessarily

⋃
iXi = fv (φ), which would make it a full partitioning).

4.5 Model checking A``TL 105

• Θ: Ξ → E is a function mapping the partitions of Ξ to E, such that Θ
is injective whenever it maps away from ∞ — i.e., Θ(Xi) = Θ(Xj) 6=∞
implies i = j.

This is easily lifted to the states of a HABA: (φ,Ξ,Θ) is a q-valuation (for
some q ∈ QH) if it is an Eq-valuation (if dqe) or E∞

q -valuation (if bqc). We
write Vq(φ), ranged over by v, to denote the set of q-valuations of φ, and Vq to
denote the set of all q-valuations.

Preliminary notations. We denote the components of a valuation v as
(φv ,Ξv ,Θv). From a partition interpretation Θ we can easily construct a
“proper” (partial) interpretation Θ: fv (φ) ⇀ Ent∞ by flattening14 Θ:

Θ: x 7→ Θ(X) if x ∈ X ∈ dom(Θ). (4.12)

A technicality: below we will need to restrict partial partitionings Ξ and map-
pings Θ of a valuation (φ,Ξ,Θ) to sub-formulae of φ, which means restricting
the underlying sets of (free) variables upon which Ξ and Θ are built to those
of that sub-formula. For this purpose, we define

Ξ � ψ = {X ∩ fv(ψ) | X ∈ Ξ, X ∩ fv(ψ) 6= ∅}

Θ � ψ = {(X ∩ fv (ψ),Θ(X)) | X ∈ dom(Θ), X ∩ fv (ψ) 6= ∅} .

We can now define the atomic proposition valuations of a state q of a HABA.
These are those q-valuations of basic A``TL propositions (i.e., freshness pred-
icates and entity equations) that make the corresponding properties true.

Definition 4.5.5. Let H be a HABA and q ∈ QH. The atomic proposition
valuations of q are defined by the set AV q ⊆ Vq of all triples (φ,Ξ,Θ) for which
one of the following holds:

• φ = tt;

• φ = (x = y), and x, y ∈ X for some X ∈ Ξ;

• φ = (x new), and x ∈ X for some X ∈ Ξ such that Θ(X) ∈ Nq.

In our setting, it is straightforward to see that x = y is true in v if both
x and y belong to the same set. Similarly x new holds when the set X —
containing x — is mapped by Θ to some fresh entity in Nq.

Closure. Along the lines of [77], we associate to each state q of a HABA
a set of q-valuations, specifically aimed at establishing the validity of a given
formula φ. For this purpose, we first collect all A``TL-formulae whose validity
is possibly relevant to the validity of φ into the so-called closure of φ. This
includes especially all sub-formulae of φ, but also ¬ψ if ψ is in the closure, X¬ψ
if Xψ is in the closure, and X(ψ1 Uψ2) if ψ1 Uψ2 is in the closure. Formally:

14Here the term “flattening” does not have to be confused with the same term used in the
OCL jargon. There flattening stands for an automatic mechanism that deals with nested
collection types (cf. Section 3.4.3).

106 Chapter 4 – Dynamic Allocation and Deallocations

Definition 4.5.6. Let φ be an A``TL-formula. The closure of φ, CL(φ), is
the smallest set of formulae (identifying ¬¬ψ with ψ) such that:

• φ, tt,ff ∈ CL(φ);

• ¬ψ ∈ CL(φ) iff ψ ∈ CL(φ);

• if ψ1 ∨ ψ2 ∈ CL(φ) then ψ1, ψ2 ∈ CL(φ);

• if ∃x.ψ ∈ CL(φ) then ψ ∈ CL(φ);

• if Xψ ∈ CL(φ) then ψ ∈ CL(φ);

• if ¬Xψ ∈ CL(φ) then X¬ψ ∈ CL(φ);

• if ψ1 Uψ2 ∈ CL(φ) then ψ1, ψ2,X(ψ1 Uψ2) ∈ CL(φ).

Example 4.5.7. The closure of the formula φ1 ≡ ∃x.(x new ∧ x 6= y) is:

CL(φ1) = {tt,ff, φ1,¬φ1, (x new ∧ x 6= y),
¬(x new ∧ x 6= y), x new,¬(x new), x 6= y, x = y}.

Similarly, the closure of φ2 ≡ X∃x.x 6= y is:

CL(φ2) = {tt,ff, φ2,¬φ2,X¬(∃x.x 6= y),
¬X¬(∃x.x 6= y), ∃x.x 6= y,¬(∃x.x 6= y), x 6= y, x = y}.

Since valuations map (sets of) variables of a given formula to entities, possi-
bly to the black hole, it is important to know how many of these variables have
to be taken into account at most. This is obviously bounded by the number
of variables occurring (free or bound) in φ, but in fact we can be a little more
precise: the number is given by K(φ) defined as

K(φ) = max {|fv(ψ)| | ψ ∈ CL(φ)} . (4.13)

The interesting case for the model checking construction is when one or more
variables are indeed mapped to the black hole. Among other things, we will
then have to make sure that sufficiently many entities of the state have imploded
into the black hole to meet the demands of the valuation. For this purpose, we
introduce the black number of a function, which is the number of entities that
such a function maps (implodes) into the black hole. For an arbitrary set A
and (partial) mapping α : A ⇀ Ent∞ this is defined by

Ω(α) = |{a ∈ A | α(a) =∞}| . (4.14)

4.5.3 Tableau graph for A``TL

We now construct a graph that will be — as anticipated in Section 2.1.6 —
the basis of the model checking algorithm. The main property of the tableau
graph is that a model for the formula φ can be extracted from it if and only

4.5 Model checking A``TL 107

�L��L��L��L��L��L��L��L��L��L��L��L� e1

q1

y

∞
λ1

e1

e2

y

q0

e1

q1

λ0

λ1

Figure 4.17: HABA H1 (left) and H2 (right).

if the formula is satisfiable in H. The nodes of this graph, called atoms after
[77], are built from states of a HABA, valuations of formulae from the closure,
and a bound on the black number.

Definition 4.5.8. Given a HABA H and an A``TL-formula φ, an atom is a
triple (q,D, k) where q ∈ QH, D ⊆ {v ∈ Vq(ψ) | ψ ∈ CL(φ),Ω(Θv) 6 k} and
k 6 K(φ) if bqc or k = 0 if dqe, such that for all v = (ψ,Ξ,Θ) ∈ Vq with
ψ ∈ CL(φ) and Ω(Θ) 6 k:

• if v ∈ AV q, then v ∈ D;

• if ψ = ¬ψ′, then v ∈ D iff (ψ′,Ξ,Θ) /∈ D;

• if ψ = ψ1 ∨ ψ2, then v ∈ D iff (ψi,Ξ � ψi,Θ � ψi) ∈ D for i = 1 or i = 2;

• if ψ = ∃x.ψ′, then v ∈ D iff there exists a (ψ′,Ξ′,Θ′) ∈ D such that
Ξ = Ξ′ � ψ, Θ = Θ′ � ψ and x ∈

⋃
Ξ′;

• if ψ = ¬Xψ′, then v ∈ D iff (X¬ψ′,Ξ,Θ) ∈ D;

• if ψ = ψ1 Uψ2, then v ∈ D iff either (ψ2,Ξ � ψ2,Θ � ψ2) ∈ D, or both
(ψ1,Ξ � ψ1,Θ � ψ1) ∈ D and (Xψ,Ξ,Θ) ∈ D.

The set of all atoms for a given formula φ constructed on top of H is
denoted AH(φ), ranged over by A,B. We denote the components of an atom
A by (qA, DA, kA).

Example 4.5.9. Consider the HABA H1 depicted in the left part of Fig-
ure 4.17 where e1 and e2 are new in q0 and X = {y}. Recall the formula

φ1 ≡ ∃x.(x new ∧ x 6= y)

and its closure from Example 4.5.7. We compute the set of atoms AH1(φ1).
Since dq0e, for q0 there is only one atom which is of the form (q0, D0, 0). Ac-
cording to Def. 4.5.5 for the component D0, the atomic proposition valuation
(ψ,Ξ,Θ) ∈ AV q0 such that ψ ∈ CL(φ1) are v0, v1, v2, v3, v4 reported in Ta-
ble 4.5 and by the first clause of Def. 4.5.8 they are contained in D0. By the
clause for negation of Def. 4.5.8 we have that also v5, v6, v7, v8, v9, v10, v11, v12 ∈

108 Chapter 4 – Dynamic Allocation and Deallocations

D0. Furthermore,
v6, v1 ∈ D0 ⇒ v13 ∈ D0

v7, v2 ∈ D0 ⇒ v14 ∈ D0

v10, v1 ∈ D0 ⇒ v15 ∈ D0

v11, v2 ∈ D0 ⇒ v16 ∈ D0.

By negation, we obtain v17, v18, v19, v20, v21 ∈ D0, and by the clause on exis-
tential quantification:

v13, v14 ∈ D0 ⇒ v22 ∈ D0

v15 ∈ D0 ⇒ v23 ∈ D0

v16 ∈ D0 ⇒ v24 ∈ D0.

Note that in D0 there are no valuations for ¬∃x.(x new ∧ x 6= y).
For state q1 we have three atoms:

(q1, D1, 0), (q1, D2, 1), (q1, D3, 2).

Sets D1, D2 and D3 differ because of the black number. In fact, valuation
(ψ,Ξ,Θ) in D1 must have Ω(Θ) = 0, while in D2 and D3 it must be Ω(Θ) 6 1
and Ω(Θ) 6 2, respectively. D1, D2, and D3 are computed following the same
pattern used for D0 (and in fact many valuations v ∈ D0 are also in D1, D2

and D3). In particular, D1 valuations are indicated in Table 4.6. Note that
there are no valuations (x new,Ξ,Θ) for any Ξ, Θ. Therefore, by negation, in
D1 (see Table 4.6) we have

v17, v18, v20, v27, v25, v26 ∈ D1

Since there are no valuations for x new∧x 6= y, it implies there are no valuations
for ∃x.x new ∧ x 6= y. This, in turn, implies by negation: v28, v29 ∈ D1. For
the second atom of q1 we have

D2 = D1 ∪ B1

where B1 (valuations with black number 1) contains the valuations reported in
Table 4.7. Finally,

D3 = D2 ∪ B2

where B2 (valuations with black number 2) contains the valuations in Table 4.8.
As forD1, bothD2 andD3 do not contain any valuation of the kind (∃x.(x new∧
x 6= y),Ξ,Θ). In fact in q1, the formula φ1 does not hold.

Example 4.5.10. Using the valuations v of the previous example, we discuss
a more interesting case. Consider the formula φ2 ≡ X∃x.x 6= y and its closure
from Example 4.5.7. The set of atoms is

AH1(φ2) = {(q0, D4, 0), (q0, D
′
4, 0), (q1, D5, 0), (q1, D

′
5, 0),

(q1, D6, 1), (q1, D
′
6, 1), (q1, D7, 2), (q1, D

′
7, 2)}.

4.5 Model checking A``TL 109

D0

v0 = (tt,∅,∅)

v1 = (x new, {{x}}, {x} 7→ e1)
v2 = (x new, {{x}}, {x} 7→ e2)

v3 = (x = y, {{x, y}}, {x, y} 7→ e1)
v4 = (x = y, {{x, y}}, {x, y} 7→ e2).

v5 = (x 6= y,∅,∅)
v6 = (x 6= y, {{x}}, {x} 7→ e1)
v7 = (x 6= y, {{x}}, {x} 7→ e2)
v8 = (x 6= y, {{y}}, {y} 7→ e1)
v9 = (x 6= y, {{y}}, {y} 7→ e2)
v10 = (x 6= y, {{x}, {y}}, {x} 7→ e1, {y} 7→ e2)
v11 = (x 6= y, {{x}, {y}}, {x} 7→ e2, {y} 7→ e1)

v12 = (¬(x new),∅,∅)

v13 = (x new ∧ x 6= y, {{x}}, {x} 7→ e1)
v14 = (x new ∧ x 6= y, {{x}}, {x} 7→ e2)
v15 = (x new ∧ x 6= y, {{x}, {y}}, {x} 7→ e1, {y} 7→ e2)
v16 = (x new ∧ x 6= y, {{x}, {y}}, {x} 7→ e2, {y} 7→ e1)

v17 = (¬(x new ∧ x 6= y),∅,∅)
v18 = (¬(x new ∧ x 6= y), {{y}}, {y} 7→ e1)
v19 = (¬(x new ∧ x 6= y), {{y}}, {y} 7→ e2)
v20 = (¬(x new ∧ x 6= y), {{x, y}}, {x, y} 7→ e1)
v21 = (¬(x new ∧ x 6= y), {{x, y}}, {x, y} 7→ e2)

v22 = (∃x.(x new ∧ x 6= y),∅,∅)
v23 = (∃x.(x new ∧ x 6= y), {{y}}, {y} 7→ e2)
v24 = (∃x.(x new ∧ x 6= y), {{y}}, {y} 7→ e1)

Table 4.5: Valuations in the set D0.

We compute its elements in details. Instead of a single atom for q0, since φ2

involves a next operator, we construct two atoms (q0, D4, 0), (q0, D
′
4, 0). In fact

a formula of the kind Xψ does not imply anything concerning the validity of
ψ in q0. This is also the reason why in the Definition 4.5.8 we do not have a
special clause for the X operator. Thus we distinguish two possibilities, one in
which Xψ holds (case D4) and one where ¬Xψ holds (case D′

4). By the same
argument as the previous example, we have

v0, v3, . . . , v11 ∈ D4, D
′
4.

110 Chapter 4 – Dynamic Allocation and Deallocations

D1

v0 = (tt,∅,∅)

v3 = (x = y, {{x, y}}, {x, y} 7→ e1)

v5 = (x 6= y,∅,∅)
v6 = (x 6= y, {{x}}, {x} 7→ e1)
v8 = (x 6= y, {{y}}, {y} 7→ e1)

v17 = (¬(x new ∧ x 6= y),∅,∅)
v18 = (¬(x new ∧ x 6= y), {{y}}, {y} 7→ e1)
v20 = (¬(x new ∧ x 6= y), {{x, y}}, {x, y} 7→ e1)
v27 = (¬(x new ∧ x 6= y), {{x}}, {x} 7→ e1)

v25 = (¬(x new),∅,∅)
v26 = (¬(x new), {{x}}, {x} 7→ e1)

v28 = (¬∃x.(x new ∧ x 6= y),∅,∅)
v29 = (¬∃x.(x new ∧ x 6= y), {{y}}, {y} 7→ e1).

Table 4.6: Valuations set D1

B1

v30 = (x = y, {{x, y}}, {x, y} 7→ ∞)

v31 = (x 6= y, {{x}}, {x} 7→ ∞)
v32 = (x 6= y, {{y}}, {y} 7→ ∞)
v33 = (x 6= y, {{x}, {y}}, {x} 7→ e1, {y} 7→ ∞)
v34 = (x 6= y, {{x}, {y}}, {x} 7→ ∞, {y} 7→ e1)

v35 = (¬(x new ∧ x 6= y), {{x}}, {x} 7→ ∞)
v36 = (¬(x new ∧ x 6= y), {{y}}, {y} 7→ ∞)
v37 = (¬(x new ∧ x 6= y), {{x, y}}, {x, y} 7→ ∞)
v38 = (¬(x new ∧ x 6= y), {{x}, {y}}, {x} 7→ e1, {y} 7→ ∞)
v39 = (¬(x new ∧ x 6= y), {{x}, {y}}, {x} 7→ ∞, {y} 7→ e1)

v40 = (¬∃x.(x new ∧ x 6= y), {{y}}, {y} 7→ ∞).

Table 4.7: Valuations set B1.

4.5 Model checking A``TL 111

B2

v41 = (x 6= y, {{x}, {y}}, {x} 7→ ∞, {y} 7→ ∞)

v42 = (¬(x new ∧ x 6= y), {{x}, {y}}, {x} 7→ ∞, {y} 7→ ∞)
v43 = (¬(x new ∧ x 6= y), {{x}, {y}}, {x} 7→ ∞, {y} 7→ ∞).

Table 4.8: Valuations set B2.

D4

v0, v3, v4, v5, v6, v7, v8, v9, v10, v11

v44 = (∃x.x 6= y,∅,∅)
v45 = (∃x.x 6= y, {{y}}, {y} 7→ e2)
v46 = (∃x.x 6= y, {{y}}, {y} 7→ e1)

v47 = (X∃x.x 6= y,∅,∅)
v48 = (X∃x.x 6= y, {{y}}, {y} 7→ e1)
v49 = (X∃x.x 6= y, {{y}}, {y} 7→ e2)

v56 = (¬X¬(∃x.x 6= y),∅,∅)
v57 = (¬X¬(∃x.x 6= y), {{y}}, {y} 7→ e1)
v58 = (¬X¬(∃x.x 6= y), {{y}}, {y} 7→ e2)

D′
4

v0, v3, v4, v5, v6, v7, v8, v9, v10, v11

v44 = (∃x.x 6= y,∅,∅)
v45 = (∃x.x 6= y, {{y}}, {y} 7→ e2)
v46 = (∃x.x 6= y, {{y}}, {y} 7→ e1)

v50 = (¬X∃x.x 6= y,∅,∅)
v51 = (¬X∃x.x 6= y, {{y}}, {y} 7→ e1)
v52 = (¬X∃x.x 6= y, {{y}}, {y} 7→ e2)

v53 = (X¬(∃x.x 6= y),∅,∅)
v54 = (X¬(∃x.x 6= y), {{y}}, {y} 7→ e1)
v55 = (X¬(∃x.x 6= y), {{y}}, {y} 7→ e2)

Table 4.9: Valuations set D4 and D′
4.

Moreover,
v6, v7 ∈ D4, D

′
4 ⇒ v44 ∈ D4, D

′
4

v10 ∈ D4, D
′
4 ⇒ v45 ∈ D4, D

′
4

v11 ∈ D4, D
′
4 ⇒ v46 ∈ D4, D

′
4.

This implies that in D4 and D′
4 there are no triples of the form (¬∃x.x 6=

112 Chapter 4 – Dynamic Allocation and Deallocations

D5 D′
5

(tt,∅,∅)
(x = y, {{x, y}}, {x, y} 7→ e1)
(x 6= y,∅,∅)
(x 6= y, {{x}}, {x} 7→ e1)
(x 6= y, {{y}}, {y} 7→ e1)
(∃x.x 6= y,∅,∅)
(¬∃x.x 6= y, {{y}}, {y} 7→ e1)
(X∃x.x 6= y,∅,∅)
(X∃x.x 6= y, {{y}}, {y} 7→ e1)
(¬X¬(∃x.x 6= y),∅,∅)
(¬X¬(∃x.x 6= y), {{y}}, {y} 7→ e1)

(tt,∅,∅)
(x = y, {{x, y}}, {x, y} 7→ e1)
(x 6= y,∅,∅)
(x 6= y, {{x}}, {x} 7→ e1)
(x 6= y, {{y}}, {y} 7→ e1)
(∃x.x 6= y,∅,∅)
(¬∃x.x 6= y, {{y}}, {y} 7→ e1)
(¬X∃x.x 6= y,∅,∅)
(¬X∃x.x 6= y, {{y}}, {y} 7→ e1)
(X¬(∃x.x 6= y),∅,∅)
(X¬(∃x.x 6= y), {{y}}, {y} 7→ e1)

Table 4.10: Set of valuations D5 and D′
5 in Example 4.5.9.

y,Ξ,Θ) since all possible partitionings of fv (∃x.x 6= y) are in valuations with the
formula ∃x.x 6= y. Note how D4 has valuations with X (i.e. v47, v48, v49 ∈ D4)
whereas D′

4 those with ¬X (i.e., v50, v51, v52 ∈ D
′
4) which in turn implies (by

definition of atom):
v56, v57, v58 ∈ D4

v53, v54, v55 ∈ D
′
4

respectively. The atoms of state q1 are15: (q1, D5, 0), (q1, D
′
5, 0), (q1, D6, 1),

(q1, D
′
6, 1), (q1, D7, 2), (q1, D

′
7, 2). The computation of D5 and D′

5 is similar
to D4 and D′

4, therefore we skip intermediate steps and we indicate only the
resulting valuations in Table 4.10 (note that for both D5 and D′

5 the first
valuations correspond to v0, v3, v5, v6, v8).

For D6 and D′
6 we take

D5\{(¬∃x.x 6= y, {{y}}, {y} 7→ e1)} and D′
5\{(¬∃x.x 6= y, {{y}}, {y} 7→ e1)}

respectively, and we extend them in order to include valuations with black
number 1 (recall that atoms with D6 and D′

6 have Ω(Θ) = 1), that are

v30, v31, v32, v33, v34 ∈ D6, D
′
6

(they are reported in Table 4.7) and moreover

v33 ∈ D6, D
′
6 ⇒ v59 ∈ D6, D

′
6

v34 ∈ D6, D
′
6 ⇒ v60 ∈ D6, D

′
6.

In particular, in D6 and D′
6 there are no triples (¬(∃x.x 6= y),Ξ,Θ) for any Ξ,

and Θ. This conforms with the intuition that the black number is 1, i.e., there
exists one entity in the black hole distinct from e1. Thus ¬∃x.x 6= y cannot
hold in q1.

15Again the primed version of a set D will be used for formulae of the kind ¬Xψ.

4.5 Model checking A``TL 113

D6

D5\{(¬∃x.x 6= y, {{y}}, {y} 7→ e1)}
v30, v31, v32, v33, v34

v59 = (∃x.x 6= y, {{y}}, {y} 7→ ∞)
v60 = (∃x.x 6= y, {{y}}, {y} 7→ e1)
v61 = (X∃x.x 6= y,∅,∅)
v62 = (X∃x.x 6= y, {{y}}, {y} 7→ e1)
v63 = (X∃x.x 6= y, {{y}}, {y} 7→ ∞)

v64 = (¬X¬∃x.x 6= y,∅,∅)
v65 = (¬X¬∃x.x 6= y, {{y}}, {y} 7→ e1)
v66 = (¬X¬∃x.x 6= y, {{y}}, {y} 7→ ∞)

D′
6

D′
5\{(¬∃x.x 6= y, {{y}}, {y} 7→ e1)}

v30, v31, v32, v33, v34
v59 = (∃x.x 6= y, {{y}}, {y} 7→ ∞)
v60 = (∃x.x 6= y, {{y}}, {y} 7→ e1)
v67 = (¬X∃x.x 6= y,∅,∅)
v68 = (¬X∃x.x 6= y, {{y}}, {y} 7→ e1)
v69 = (¬X∃x.x 6= y, {{y}}, {y} 7→ ∞)

v70 = (X¬∃x.x 6= y,∅,∅)
v71 = (X¬∃x.x 6= y, {{y}}, {y} 7→ e1)
v72 = (X¬∃x.x 6= y, {{y}}, {y} 7→ ∞)

Table 4.11: Valuations sets D6 and D′
6.

Again note that we distinguish between D6 and D′
6 for valuations with X

and ¬X. In particular:

v61, v62, v63, v64, v65, v66 ∈ D6

v67, v68, v69, v70, v71, v72 ∈ D′
6.

Finally, it is easy to define D7 and D′
7:

D7 = D6 ∪ {v41} and D′
7 = D′

6 ∪ {v41}.

Definition 4.5.11. The tableau graph for a HABA H and an A``TL-formula
φ, denoted GH(φ), consists of vertices AH(φ) and edges→ ⊆ AH(φ)×(Ent∞ ⇀
Ent∞)×AH(φ) determined by

(q,D, k) −→λ (q′, D′, k′) iff q −→λ q
′,

∀Xψ∈CL(φ) : (Xψ,Ξ,Θ)∈D ⇔ (ψ,Ξ, λ ◦Θ)∈D′,

k′ =

{
min(K(φ), k + Ω(λ)) if bq′c
0 if dq′e.

114 Chapter 4 – Dynamic Allocation and Deallocations

�L��L��L��L��L��L��L��L��L��L��L��L�
(q1,D2, 1)

λ1

(q1,D1, 0)

λ1

(q1,D3, 2)

λ1

(q0,D0, 0)
λ0

GH1
(∃x.(x new ∧ x 6= y))

e1

e2

y

q0

e1

q1

λ0

λ1

H1

Figure 4.18: HABA H1 and corresponding graph GH1(∃x.(x new ∧ x 6= y)).

In the tableau graphGH(φ) there exists a transition between atoms (q,D, k)
and (q′, D′, k′) if in H this transition exists between the underlying states q
and q′. In this way, GH(φ) mimics H. Furthermore, the transition must be
sound w.r.t. the set of valuations contained in the two atoms. More precisely,
according to the second condition, every valuation with an outer-most next
operator such as (Xψ,Ξ,Θ) ∈ D must correspond to a valuation (ψ,Ξ,Θ′) ∈ D′

and vice-versa. Note that in order to be sound w.r.t. the A``TL semantics,
the two functions Θ and Θ′ — mapping the partitions of Ξ onto entities —
must be consistent according to the reallocation λ, i.e., Θ′ = λ ◦ Θ. Finally,
the last condition gives a constraint on the number of entities in the black hole
assumed by the two atoms, i.e., k and k′. In particular, if q′ is not bounded,
k′ corresponds to the sum (up to the upper bound K(φ)) of the number of
entities (i.e., k) in the black hole of the source state and the number of entities
that implode during the transition. The latter is the black number of the
reallocation, i.e. Ω(λ).

Note that if H is finite-state, then GH(φ) can be effectively constructed:
the set of atoms is finite for every given state due to the bound K(φ).

Example 4.5.12. The graph GH1(∃x.(x new ∧ x 6= y)) for the set of atoms
computed in Example 4.5.9 is shown in Figure 4.18 while GH1(X∃x.x 6= y) for
the set of atoms of Example 4.5.10 is shown in Figure 4.19. Atoms correspond-
ing to accept states of the original HABA are drawn with a double circle16. In
GH1(X∃x.x 6= y), there are only four transitions (self-loops in atoms (q1, D6, 1)
and (q1, D7, 2) and (q1, D6, 1) −→λ1

(q1, D
′
6, 1) and (q1, D7, 2) −→λ1

(q1, D
′
7, 2)).

No other transitions can be set because either the condition on the X operator
or the condition on the black number of Def 4.5.11 is violated in any other
case. For example, valuation v48 = (X∃x.x 6= y, {{y}}, {y} 7→ e1) is in D4,

16Formally speaking a tableau graph does not have accept states. However, here we dis-
tinguish these atoms from the others only in order to facilitate their identification that will
be useful later.

4.5 Model checking A``TL 115

however, (∃x.x 6= y, {{y}}, λ0 ◦ {y} 7→ e1) = (∃x.x 6= y, {{y}}, {y} 7→ e1) does
not belong to D5, therefore there is no transition (q0, D4, 0) −→λ0

(q1, D5, 0).
While, (q0, D4, 0) 9λ0 (q1, D6, 1) because the condition on the k component is
not fulfilled as the transition does not implode any entity.

Example 4.5.13. The right part of Figure 4.17 shows the HABA H2 with
the only state q1 (it represents a modified version of q1 of H1). In this case
λ1 implodes e1 and therefore in each state a new entity is created. For φ2 ≡
X∃x.x 6= y the set of atoms contains precisely those atoms obtained in the
previous example for state q1. In fact, in the definition of atoms, the transitions
of the HABA are not taken into account. Atoms for a given q only depend
on Eq , Nq and on the (un)boundedness of q. For H2 the resulting graph
GH2(φ2) is depicted in the right part of Figure 4.20. In this case the third
component k of the atom plays an active role. Since λ1 implodes at each
step an entity, the possible transitions in the graph are between atoms of the
form (ψ,D, k) −→λ1

(ψ,D, k + 1) with k = 0, 1. This is because in general
with a formula φ, we may need to distinguish up to K(φ) different situations
according to how many entities are imploded into the black hole. Above this
number we do not longer need to differentiate. This explains the transition
(q1, D7, 2) −→λ1

(q1, D7, 2).

A path through a tableau graph is an infinite sequence of states and tran-
sitions, starting at an initial state of the HABA and satisfying the acceptance
condition of the HABA, such that all “until”-subformulae in any of the atoms
are satisfied somewhere further down the sequence.

Definition 4.5.14. An allocation path in GH(φ) is an infinite sequence π =
(q0, D0, k0) λ0 (q1, D1, k1) λ1 · · · such that:

1. q0λ0q1λ1 · · · ∈ runs(H);

2. for all i > 0, (qi, Di, ki) −→λi
(qi+1, Di+1, ki+1);

3. for all i > 0 and all (ψ1 Uψ2,Ξ,Θ) ∈ Di, there exists a j > i such that
(ψ2,Ξ � ψ2, λj−1 ◦ · · ·λi ◦ (Θ � ψ2)) ∈ Dj .

Definition 4.5.15. Given an allocation path π = (q0, D0, k0) λ0 (q1, D1, k1) λ1

· · · in GH(φ), we say that π fulfils φ if the underlying run ρ = q0λ0q1λ1 · · ·
generates an allocation triple (σ,N, θ) with a generator (hi)i∈N such that

• k0 = min(K(φ),Ω(h0)) and

• σ,N, θ � φ.

If φ is clear from the context, we call π a fulfilling path.
Furthermore, recall that (cf. Definition 4.3.11) if there exists (σ,N, θ) ∈

L(H) such that σ,N, θ |= φ we say that φ is H-satisfiable.

This sets the stage for the main results. We first state the correspondence
between the fulfilment of a formula by a path and the presence of that formula
in the initial atom of the path.

116 Chapter 4 – Dynamic Allocation and Deallocations

�L��L��L��L��L��L��L��L��L��L��L��L�
(q1,D

′
5, 0)

(q0,D
′
4, 0)(q0,D4, 0)

(q1,D5, 0)

(q1,D6, 1)

(q1,D7, 2)

λ1

λ1

λ1

λ1

(q1,D
′
7, 2)

e1

e2

y

q0

e1

q1

λ0

λ1

H1

GH1
(X(∃x.x 6= y))

(q1,D
′
6, 1)

Figure 4.19: HABA H1 and corresponding graph GH1(X(∃x.x 6= y)).

(q1, D5, 0) (q1,D
′
5, 0)

(q1, D6, 1)

(q1, D7, 2)

(q1,D
′
6, 1)

(q1,D
′
7, 2)

λ1

λ1

λ1

λ1

λ1

H2

GH2
(X(∃x.x 6= y))

e1

q1

y

∞
λ1

Figure 4.20: HABA H2 and corresponding graph GH2(X(∃x.x 6= y)).

Proposition 4.5.16. A path π in GH(φ) fulfils φ if and only if there exists
(φ,Ξ,Θ) ∈ D0 (for some Ξ,Θ) such that IH(q0) = Θ.

Proof. See Appendix A.4.

Furthermore, there is a correspondence between the satisfiability of a for-
mula in the HABA and the existence of a fulfilling path in the tableau graph.

4.5 Model checking A``TL 117

Proposition 4.5.17. φ is H-satisfiable if and only if there exists a path in
GH(φ) that fulfils φ.

Proof. See Appendix A.4.

Example 4.5.18. The path π = (q0, D0, 0)λ0((q1, D1, 0)λ1)
ω of GH(∃x.(x new

∧ x 6= y)) in Figure 4.18 is fulfilling for φ1 ≡ ∃x.(x new ∧ x 6= y). On the
other hand, X∃x.x 6= y is not H1-satisfiable. In fact, there are no paths in
GH1(X∃x.x 6= y) (see Figure 4.19). Finally, X∃x.x 6= y is H2-satisfiable. The
path (q1, D5, 0)λ1(q1, D6, 1)(λ1(q1, D7, 2))ω is a fulfilling path (see Figure 4.20).

From now on we can (almost) rely on standard theory (see Section 2.1.6).
The first observation is that a tableau graph can have infinitely many different
paths, therefore looking for a fulfilling path for φ is still not an effective method
for model checking. We need the following definitions.

Definition 4.5.19. A subgraph G′ ⊆ GH(φ) is self-fulfilling if every node A
in G′ has at least an outgoing edge and for every (ψ1 Uψ2,Ξ,Θ) ∈ DA there
exists a node B ∈ G′ such that

• A = A0 −→λ0
A1 −→λ1

· · · −→λi−2
Ai−1 −→λi−1

Ai = B

• (ψ2,Ξ � ψ2, λi−1 ◦ · · ·λ0 ◦ (Θ � ψ2)) ∈ DB .

A prefix in GH(φ) is a sequence A0 −→λ0
A1 −→λ1

· · · −→λi−2
Ai−1 −→λi−1

Ai
such that A0 is an initial atom (i.e., qA0 ∈ IH) and Ai is in a self-fulfilling
subgraph.

Let Inf (π) denote the set of nodes that appear infinitely often in the path
π. Inf (π) is a strongly connected subgraph (SCS). We can prove the following
implication:

Proposition 4.5.20. π is a fulfilling path in GH(φ)⇒ Inf (π) is a self-fulfilling
SCS of GH(φ).

Proof. See Appendix A.4.

Proposition 4.5.21. Let G′ ⊆ GH(φ) be a self-fulfilling SCS such that

• there exists a prefix ofG′ starting at an initial atomA with (φ,Ξ,Θ) ∈ DA

such that IH(qA) = Θ;

• for all F ∈ FH : F ∩ {q|(q,D, k) ∈ G′} 6= ∅;

Then there exists a path π in GH(φ) that fulfils φ such that Inf (π) = G′.

Proof. See Appendix A.4.

Finally, we can collect all the previous results into the following theorem,
which is the main result of this chapter, stating in essence that the model-
checking problem for A``TL over HABA is decidable.

118 Chapter 4 – Dynamic Allocation and Deallocations

Theorem 4.5.22 (Decidibility). For any HABA H and formula φ, it is
decidable whether or not φ is H-satisfiable.

Proof. See Appendix A.4.

Example 4.5.23. At this point, it becomes interesting to have a final ex-
ample that summarises the complete model-checking procedure. Consider
φ3 ≡ G(∃x.x 6= y). This formula expresses that there are always at least
two entities. It can be rewritten as

φ3 ≡ ¬(tt U¬∃x.x 6= y).

Its closure is

CL(φ3) = {tt, φ3, ∃x.x 6= y,X(tt U¬∃x.x 6= y),X¬(tt U¬∃x.x 6= y),
x = y,ff,¬φ3,¬∃x.x 6= y,¬X(tt U¬∃x.x 6= y),
¬X¬(tt U¬∃x.x 6= y), x 6= y}.

We check whether φ3 is H2-satisfiable (H2 is depicted in Figure 4.17). Similarly
to Example 4.5.10, the set of atoms is

AH2(φ3) = {(q1, D8, 0), (q1, D
′
8, 0), (q1, D9, 1),

(q1, D
′
9, 1), (q1, D10, 2), (q1, D

′
10, 2)}.

We just give the final resulting sets of valuation since the computation follows
the same pattern as the previous examples17. Sets D9 and D′

9 contain also
valuations with black number 1.

In particular note that in D9 and D′
9 there are no triples of the form

(¬∃x.x 6= y,Θ) for any Θ. Finally, we have D10 = D9 ∪ {v41} and D′
10 =

D′
9 ∪ {v41}.

The graph GH2(φ3) is depicted in Figure 4.21. The valuation

(¬(tt U¬∃x.x 6= y), {y} 7→ e1)

belongs neither to D8 nor D′
8, therefore the formula φ3 ≡ G(∃x.x 6= y) is not

H2-satisfiable. This is in fact correct since in the first state there is only one
entity. However, it is interesting to note that (X¬(tt U¬∃x.x 6= y)), {y} 7→ e1) ∈
D′

8, therefore the path π = (q1, D
′
8, 0)λ1(q1, D

′
9, 1)(λ0(q1, D

′
10, 2))ω is fulfilling

for the the formula Xφ3 ≡ XG(∃x.x 6= y). Hence, Xφ3 is H2-satisfiable. Again
this is correct since in the second state there is already an imploded entity
in the black hole. Although for this example it easy to see that π fulfils Xφ3,
Proposition 4.5.21 can also be used. In particular, (q1, D

′
8, 0) is the initial atom

containing the correct valuation of Xφ3. Furthermore, (q1, D
′
8, 0)λ1(q1, D

′
9, 1)

is a prefix and (q1, D
′
10, 2)λ1(q1, D

′
10, 2) is a self-fulfilling SCS (note that in D′

10

there are no valuations for U -formulae but only valuations for negations of
U -formulae). Finally, the intersection between the SCS and the set FH2 is not
empty since q1 is the only accept state of H2.

17Here, for the sake of brevity, in a valuation (ψ,Ξ,Θ) we skip the second component Ξ
since it corresponds to dom(Θ).

4.5 Model checking A``TL 119

D8 D′
8

v0, v3, v5, v6, v8,

(∃x.x 6= y,∅)

(¬(∃x.x 6= y), {y} 7→ e1)

(X(tt U¬∃x.x 6= y),∅)
(X(tt U¬∃x.x 6= y), {y} 7→ e1)

(¬X¬(tt U¬∃x.x 6= y),∅)
(¬X¬(tt U¬∃x.x 6= y), {y} 7→ e1)

((tt U¬∃x.x 6= y),∅)
((tt U¬∃x.x 6= y), {y} 7→ e1)

v0, v3, v5, v6, v8

(∃x.x 6= y,∅)

(¬(∃x.x 6= y), {y} 7→ e1)

(¬X(tt U¬∃x.x 6= y),∅)
(¬X(tt U¬∃x.x 6= y), {y} 7→ e1)

(X¬(tt U¬∃x.x 6= y),∅)
(X¬(tt U¬∃x.x 6= y), {y} 7→ e1)

(¬(tt U¬∃x.x 6= y),∅)

((tt U¬∃x.x 6= y), {y} 7→ e1)

Table 4.12: Set of valuations D8 and D′
8.

D9 D′
9

D8\{(¬(∃x.x 6= y), {y} 7→ e1)}

v30, v31, v32, v33, v34

(∃x.x 6= y,∅)
(∃x.x 6= y, {y} 7→ e1)
(∃x.x 6= y, {y} 7→ ∞)

(X(tt U¬∃x.x 6= y),∅)
(X(tt U¬∃x.x 6= y), {y} 7→ e1)
(X(tt U¬∃x.x 6= y), {y} 7→ ∞)

(¬X¬(tt U¬∃x.x 6= y),∅)
(¬X¬(tt U¬∃x.x 6= y), {y} 7→ e1)
(¬X¬(tt U¬∃x.x 6= y), {y} 7→ ∞)

((tt U¬∃x.x 6= y),∅)
((tt U¬∃x.x 6= y), {y} 7→ e1)
((tt U¬∃x.x 6= y), {y} 7→ ∞)

D′
8\{(¬(∃x.x 6= y), {y} 7→ e1)}

v30, v31, v32, v33, v34

(∃x.x 6= y,∅)
(∃x.x 6= y, {y} 7→ e1)
(∃x.x 6= y, {y} 7→ ∞)

(¬X(tt U¬∃x.x 6= y),∅)
(¬X(tt U¬∃x.x 6= y), {y} 7→ e1)
(¬X(tt U¬∃x.x 6= y), {y} 7→ ∞)

(X¬(tt U¬∃x.x 6= y),∅)
(X¬(tt U¬∃x.x 6= y), {y} 7→ e1)
(X¬(tt U¬∃x.x 6= y), {y} 7→ ∞)

(¬(tt U¬∃x.x 6= y),∅)
(¬(tt U¬∃x.x 6= y), {y} 7→ e1)
(¬(tt U¬∃x.x 6= y), {y} 7→ ∞)

Table 4.13: Set of valuations D9 and D′
9.

120 Chapter 4 – Dynamic Allocation and Deallocations

e1

q1

y

∞
λ1

H2

λ1

λ1

λ1
λ1

λ1

λ1

(q1,D8, 0)

(q1,D9, 1)

(q1,D10, 2)

(q1,D
′
8, 0)

(q1,D
′
9, 1)

(q1,D
′
10, 2)

GH2
(G∃x.x 6= y)

Figure 4.21: HABA H2 and corresponding graph GH2(G∃x.x 6= y).

4.5.4 Complexity

We discuss briefly and in a rather informal manner on the complexity of the
algorithm described in Section 4.5. The aim is to find an upper bound to
the worst-case time complexity of model-checking. First we investigate the
construction of the tableau graph. This involves as a preliminary step the
duplication of the HABA. Then we give an upper bound on the number of
steps needed to decide if a SCS is self-fulfilling.

Duplication For a HABA H, let

Tmax = max {|{(q, λ, q′) | (q, λ, q′) ∈ −→H}| | q, q
′ ∈ QH},

i.e., Tmax is the largest number of transitions between two states of H. The
number of states of the duplication Hδ is bounded by:

|QHδ
| 6 |QH|

2 · Tmax (4.15)

as in the worst case for a given state q ∈ QH we have to create a new state
q′ ∈ QHδ

for every incoming transitions of q.
The number of transitions we have to add to construct Hδ is linear to |QHδ

|
because one new transition is enough for every new state.

Note that the largest number of transitions between two states does not
increase after the duplication. Therefore when needed we will use Tmax of H.

Graph construction. For a givenA``TL-formula φ, note that O(|CL(φ)|) =
O(|φ|) as well as O(K(φ)) = O(|φ|). The construction of the graph is done on
the duplication of H. We have:

|AH(φ)| 6 2|φ| · |QHδ
| · |φ| (4.16)

4.5 Model checking A``TL 121

because, for every state q ∈ QHδ
we have K(φ) atoms if bqc and each atom

must be duplicated for every formula of the type Xψ ∈ CL(φ).
The complexity of the construction of a single atom (q,D, k) is dictated by

the size of the set of valuations D. It is bounded by the following:

|D| 6 |φ| ·B|φ| ·
(|Eq |+ 1)!

(|Eq |+ 1− |φ|)!
(4.17)

where B|φ| is the |φ|-th Bell number. This formula can be explained as follows:
for a ψ ∈ CL(φ) we have a valuation for every partial partition of fv (ψ).
There are Bfv(ψ) of these valuations. We can substitute Bfv(ψ) by B|φ| because
B|fv(ψ)| 6 B|φ|. For each of these partitions we need to consider every injection
to Eq (last term of (4.17)). We add 1 in order to consider the black hole.
Finally, since in D there are valuations for each ψ ∈ CL(φ), we multiply by the
first term |φ|.

Let Emax = max {|Eq| | q ∈ QH}, i.e., Emax is the cardinality of the largest
set of entities in any state of H (and therefore of Hδ). Furthermore, let us
denote with Dmax the cardinality of the largest set of valuations in AH(φ), i.e.,

Dmax = max {|D| | (q,D, k) ∈ AH(φ)}. Since
(|Eq |+1)!

(|Eq|+1−|φ|)! 6 (|Eq |+ 1)|φ|, then

by (4.17) we obtain:

Dmax 6 |φ| · B|φ| · (Emax + 1)|φ|. (4.18)

Thus, we conclude that the complexity for the construction of a single atom is

of the order O(|φ| ·B|φ| ·E
|φ|
max). The number of edges TG in GH(φ) is bounded

by18

TG 6 |AH(φ)|2 · Tmax. (4.19)

Finally, the cost of the construction of GH(φ) is given by summing the
complexity of building AH(φ) and the set of edges respectively. Using (4.15),
(4.16), (4.18) and (4.19) we have:

O(|AH(φ)| ·Dmax + |AH(φ)|2 · Tmax)

= O(|AH(φ)| · |φ| · B|φ| ·E
|φ|
max + |AH(φ)|2 · Tmax)

= O(2|φ| · |QHδ
| · |φ|2 · (B|φ| · E

|φ|
max + 2|φ| · |QHδ

| · Tmax))

= O(2|φ| · |QH|2 · Tmax · |φ|2 · (B|φ| ·E
|φ|
max + 2|φ| · |QH|2 · T 2

max)).

Thus, constructing the graph is:

18In principle, Tmax is of the order O(EEmax
max) as we can have every possible injective

partial mapping from a set of cardinality Emax to another set of cardinality Emax. However,
it is reasonable to consider that for big Emax such a bound becomes unrealistic. It is hard
to imagine such a HABA with so many transitions between two states. For example, the
symbolic semantics presented in Section 4.4 is deterministic. Tmax is equal to the number of
parallel components of the program and does not depend on Emax. By this consideration,
for a more sensible general picture of the model checking algorithm computational cost, it
seems reasonable to keep Tmax itself in the complexity measure.

122 Chapter 4 – Dynamic Allocation and Deallocations

• O(|QH|4), i.e., polynomial in the number of states of H;

• O(2|φ| · |φ|2 ·B|φ| · E
|φ|
max), i.e., super-exponential on the size of φ;

• O(E
|φ|
max), i.e., polynomial in the largest number of entities in H.

Deciding if a SCS is self-fulfilling. To decide whether a given strongly
connected component G is self-fulfilling, we propose an algorithm consisting of
the following steps:

• Construct a linking structure with nodes (A,ψ1 Uψ2,Θ) where A =
(q,D, k) is an atom in G and (ψ1 Uψ2,Ξ,Θ) ∈ D, and edges

(A′, ψ1 Uψ2,Θ
′)→ (A,ψ1 Uψ2,Θ)

for all A −→λ A
′ with Θ′ = λ◦Θ. (Note that the links in this newly created

structure go in the reverse direction w.r.t. the edges of the tableau graph.)

• Appoint in this structure all nodes (A,ψ1 Uψ2,Θ) as initial for which
(ψ2,Ξ � ψ2,Θ � ψ2) ∈ DA.

• Perform a reachability analysis on the structure thus obtained.

We claim that G is self-fulfilling iff all nodes of this linking structure are reach-
able. For if all nodes are reachable then for all A ∈ G and all (ψ1 Uψ2,Ξ,Θ)
there is a path

(An, ψ1 Uψ2,Θn)→ · · · → (A0, ψ1 Uψ2,Θ0)

with A0 = A, Θ0 = Θ, A0 −→λ0
· · · −→λn−1

An and (ψ2,Ξ � ψ2, λn−1 ◦ · · · ◦ λ0 ◦

(Θ0 � ψ2)) ∈ DA0 ; hence G is self-fulfilling. Vice versa, if for all A ∈ G and all
(ψ1 Uψ2,Ξ,Θ) ∈ DA there is a node B ∈ G such that

• A = A0 −→λ0
· · · −→λn−1

An = B

• (ψ2,Ξ � ψ2, λn−1 ◦ · · · ◦ λ0 ◦ (Θ � ψ2)) ∈ DB

then also (An, ψ1 Uψ2,Θn)→ · · · → (A0, ψ1 Uψ2,Θ0) with Θi = λi−1◦· · ·◦λ0◦
Θ is a path through the linking structure, and (An, ψ1 Uψ2,Θn) is an initial
node in that structure.

The cost of this analysis equals the cost of building the linking structure
plus the cost of the reachability analysis, which is linear in the size of that
linking structure. The size of this structure is dictated by the number of edges,
which equals the number of edges in G times the number of “ U -valuations” in
each atom of G — which in turn is linear to Dmax. Thus we obtain the following
worst case cost for establishing whether a given SCS G is self-fulfilling:

O(TG ·Dmax)

where TG is the number of edges in G.

4.6 Related work 123

The number of SCS in GH(φ) is of the order O(2|AH(φ)| · Tmax). Hence, the
worst time complexity for checking if there exists a self-fulfilling SCS is:

O(2|AH(φ)| · Tmax · TG ·Dmax)

= O(2|QHδ
|·|φ|·2|φ|

· T 2
max · 2

2|φ| · |QHδ
|2 · |φ|3 · B|φ| ·E

|φ|
max)

= O(2(2|φ|·|QHδ
|+2)|φ| · T 2

max · |QHδ
|2 · |φ|3 · B|φ| ·E

|φ|
max)

= O(2(2|φ|·|QH|2·Tmax+2)|φ| · T 4
max · |QH|4 · |φ|3 ·B|φ| · E

|φ|
max)

If we single out the different paramenters we have:

• O(22|φ||φ| · |φ|3 · B|φ| · E
|φ|
max) in the size of the formula φ;

• O(2|QH|2 · |QH|4) in the size of the model H;

• O(E
|φ|
max), i.e., polinomial in the largest number of entities in H.

Discussion. Clearly, here the presence of entities in the states and the valu-
ations that must be taken into account produces a rather expensive overhead
with respect to the tableau algorithm for LTL presented in [77] (and sum-
marised in Section 2.1.6) that is only exponential in |φ|. However, as remarked
in [77] most interesting properties about safety and liveness can be formulated
by small size formulae.

Concerning the parameter Emax, in order to have an idea how it may grow,
we can consider the programming language L of Section 4.4. There Emax is
bounded by the number of variables in the program.

Although, the bound given here is rather rough, more problematic is the
complexity with respect to size of the model since in principle nothing can be
assumed for the cardinality of QH. The LTL algorithm is linear in the size of
the model (instead of exponential) because it uses maximal strong connected
components (MSCC) instead of SCS (that are an exponential number). It is
very likely that the same optimisation would provide similar benefits in the
algorithm defined in this section. Nevertheless, in this thesis the emphasis is
in the decidability result while optimisations of the algorithm is postponed to
future work.

4.6 Related work

History-dependent automata. History-dependent (HD) automata [83, 84,
90] are the main inspiration for HABAs. An HD-automaton is an automaton
where states, transitions and labels are equipped with a set of local names that
can be created dynamically19. After the definition of HABAs in this chapter
it is interesting to briefly relate the two formalisms. Reallocation of entities in

19For a summary on HD-automata in this thesis see Section 2.2.

124 Chapter 4 – Dynamic Allocation and Deallocations

HABAs resembles the reallocation of names in HD-automata. HD-automata
and HABAs differ in the way in which entities are referred to. More precisely,
in a HABA, entities can only be addressed by means of logical variables that
can be compared by A``TL-formulae. More important, though, is the novelty
introduced in HABAs by the black hole abstraction. This key feature allows
us to deal with a possibly unbounded number of entities. Another difference
concerns the accepted language. HABAs are automata on infinite words (be-
cause of the generalised Büchi acceptance condition), whereas HD-automata
are defined on finite words.

Spatial logic. Related to A``TL, concerning properties of freshness, is the
recent Spatial Logic (SL) [21, 17]. SL is defined for the Ambient Calculus [19]
and has modalities that refer to space as well as time. Freshness can be identi-
fied in SL using a special quantifier, and has a somewhat different interpretation
than in A``TL. More precisely, in SL “fresh” means distinct from any name
used in formula and in the model satisfying it. If there is a fresh name, there are
infinitely many of them (Gabbay-Pitts property [50]). In contrast, in A``TL,
if an entity is fresh it means that the entity is used in the current state and
did not appear previously. This conceptual difference has several consequences.
For instance, there exist non-contradictory A``TL-formulae where more than
one distinct fresh entity is identified in the same state. Another difference be-
tween SL and A``TL concerns quantification. In SL, quantification is over a
fixed (countable) set of names, whereas in A``TL, quantification ranges over
entities that are alive in the current state. This set is not fixed from state to
state. Therefore, e.g., the A``TL formula ∀x.Xφ is not equivalent to X∀x.φ (cf.
Proposition 4.2.5).

Tableau-based methods. As we have seen in Chapter 2, there are basically
two approaches to model-checking temporal logics: the automata-theoretic ap-
proach (for LTL [109] and CTL [47, 73]) and the tableau method. Tableaux are
typically used for the solution of more general problems, like satisfiability. For
model checking, the tableau approach was first developed for CTL [6, 26]. Our
algorithm is strongly based on the tableau method for LTL presented in [77].

Model checking and logics for object-oriented systems. Model check-
ing tools for object-oriented systems are becoming more and more popular.
However — in the approaches we are aware of — such as Bandera [32], Java
PathFinder [58] and others (see Section 1.4 for a global overview of software
model checkers) dynamic creation of objects is only supported to a limited ex-
tent: the number of created objects must be bounded a priori. Moreover, also
the property specification formalisms are not tailored towards dynamic aspects
of objects (such as allocation and de-allocation).

The paper [112] deals with unbounded number of Java objects and threads.
The approach is mostly based on abstract interpretation and 3-valued logic.

4.6 Related work 125

The main idea is to conservatively represent (via 3-valued logical structures)
many configurations using a single abstract configuration. This clearly relates
with the black hole abstraction. However, the paper deals only with safety
properties and in particular, the emphasis is on the interference between Java
threads, deadlocks, shared abstract data types, and illegal thread interactions.
Furthermore, this technique may falsely report that a safety property may be
violated, although it can never miss a violation. The recent paper [113] (again
based on 3-valued logic) presents a formalism, called Evolution Temporal Logic
(ETL), that in many aspects is rather close to A``TL. As A``TL, ETL permits
to express properties concerning the allocation and deallocation of objects and
threads. It uses models with reallocations corresponding to those employed
by HD-automata and by the version of HABAs defined in this chapter. An
abstract-interpretation algorithm, again, sound but not complete, for verifying
the properties is also proposed.

5

Dynamic References

5.1 Introduction

Pointers (references) are a powerful programming mechanism. They are very
flexible but at the same time error prone due to the so-called complexity of
pointer swing [67, 94] resulting from aliasing: apparently unrelated expressions
may be altered by the assignment to an entity in memory referred to by more
than one pointer. It is difficult to control and to reason about this phenomenon.
Run-time safety violations (e.g., dereferencing null or disposed pointers) easily
arise and their detection cannot be ensured by type systems. Although the
advent of object-oriented languages has limited the use of pointers (at least at
the programming level), the possibility for an object to refer to other objects
is still present in any practical object-oriented model describing interactions
among objects. For example, proper concepts of object-orientation such as
object composition reduces to references between objects. Thus, for reasoning
about object-oriented systems it is indispensable to be able to reason about
the way objects refer to each other.

In order to capture essential information of systems dealing with references,
we introduce a logic, called Na``TL, whose primitives address dynamic alloca-
tion and deallocation of entities and their dynamic pointers. It should not be
surprising that Na``TL is both a subset of BOTL as well as an extension (to
pointers) of A``TL. Typical properties expressible in Na``TL are, for example:

• in object-oriented systems:

– every object reachable from a particular object will be eventually deal-
located.

127

128 Chapter 5 – Dynamic References

– objects o1 and o2 belong to disjoint lists.

• in security: no untrusted agent will have a reference to a secret datum.

Along the line of the model checking algorithm defined for A``TL (cf. Sec-
tion 4.5), in this chapter, we define another algorithm that checks whether a
Na``TL formula is not satisfiable in a given model. Also this algorithm is based
on the construction of a tableau graph [77], however in this particular case due
to a more sophisticated abstraction which allows to describe rather expressive
models, the algorithm may produce false counterexamples.

The models we propose in this chapter are an enhanced version of High-
level Allocational Büchi Automata (HABA) defined in Chapter 4 that in turn
are based on History Dependent Automata [84]. Besides the ability to de-
scribe the dynamic allocation and deallocation of entities typical of HABA (and
HD-automata), the extension we discuss here deals with references (pointers)
between entities that are alive in the same state. From state to state, refer-
ences can be created, removed and modified: i.e., the model describes dynamic
topological structures of alive entities.

In order to achieve finite-state models, we propose an abstraction that is
able to deal with some kind of unbounded systems. In HABAs we use a special
class of entities that model finite but unbounded chains of “concrete” entities.
Our unbounded entities are somehow a specialisation (to chains) of what in
the literature is known as summary node [100]. Unbounded entities provide
HABAs with the capacity to describe, by a single state, an infinite number of
topological structures that can be represented at different level of abstraction.
A precise characterisation of the relation between the different levels will result
in the notion of morphism.

As we have done in Chapter 4, we show that HABAs with references can
be used as a mathematical model for the definition of the semantics of a simple
language with basic object-based notions such as object creation, and naviga-
tion. For this language we define two semantics: a concrete one, that is infinite
state and a symbolic one that is finite state. The relation between the two
semantics is then studied.

This chapter is organised as follows: in Section 5.2 the syntax and seman-
tics of Na``TL is defined; in Section 5.3 we introduce ABA and HABA with
references as well as the notion of morphism and an enhanced version of real-
location. Then, in Section 5.4 we study how to relate ABA and HABA with
references. The programming language is defined in Section 5.5 and its op-
erational semantics in Section 5.6. The model checking algorithm is given in
Section 5.7. Finally, we conclude the chapter with an overview of other tech-
niques used for the analysis of pointer structures (Section 5.8). Proofs are
reported in Appendix B.

5.2 A logic for navigation 129

5.2 A logic for navigation

In this section, we will enhance A``TL, such that properties about navigation
can be expressed. Navigations are essentially possible when entities reference
each other. In this thesis, we restrict ourselves to the case where every entity
e has precisely one outgoing reference1. This reference is defined for entity e,
if e has a pointer (denoted by .a), otherwise it is undefined. Let LVar be a
(countable) set of logical variables.

Definition 5.2.1. Let x ∈ LVar. The syntax of Na``TL is defined by the
following grammar:

(α ∈)Nav ::= nil | x | α.a
φ ::= α = α | α new | α α | ∃x:φ | ¬φ | φ ∨ φ | Xφ | φUφ.

We refer to elements of the set Nav as navigation expressions. For instance,
the expression x.a denotes the entity referred to by the entity denoted by x
(if any). Similarly, x.a.a denotes the entity referred to by x.a. The suffix of a
navigation expression can be arbitrarily long, therefore we can specify lists of
unbounded length. We write x.an (n ∈ N) as a shorthand for x followed by n
successive pointers, that is formally:

x.a0 ≡ x

x.an+1 ≡ (x.an).a

As in A``TL, formula α new holds if the entity denoted by α is fresh in
the current state, i.e., the entity denoted by α did not exist in the previous
state of the computation. Formula α1 = α2 holds if expressions α1 and α2 are
aliases (i.e., they denote the same entity) in the current state. The predicate
α1 α2 (read α1 reaches α2 or α1 leads-to α2) means that from the entity
denoted by α1 there exists a reference path reaching the entity denoted by α2

(i.e., α1.a
k = α2 for some k > 0). As known in the literature, reachability is

not a first-order graph property [34] therefore the operator ; provide Na``TL
with some second order capabilities.

Besides standard LTL abbreviations like G, F, and the others described
in Table 4.1 for A``TL, throughout this chapter we use the typical Na``TL
abbreviations reporter in Table 5.1.

5.2.1 Semantics

Let Ent be a countable universe of entities ranged over by e, e′, e1, Na``TL
formulae are interpreted over infinite sequences of sets of entities (as A``TL)
and mappings defining information about mutual references of entities.

1For the purpose of the definition of the logic this restriction to a single outgoing reference
is not essential. It is only used to increase the precision in the abstraction that we will define
later. Lifting the definitions given here to the general case is not difficult (in that case we
would obtain a formalism very close to BOTL. See 3).

130 Chapter 5 – Dynamic References

α dead for α = nil
α alive for ¬(α dead)
α1 / α2 for ¬(α1 α2)

Table 5.1: Typical Na``TL abbreviations.

Let⊥ be a special value such that⊥ /∈ Ent . ⊥ is used to represent undefined.
For a set E we write E⊥ = E ∪ {⊥}.

Definition 5.2.2. An allocation sequence σ is an infinite sequence of pairs
(E0, µ0)(E1, µ1)(E2, µ2) · · · where for i ∈ N:

• Ei ⊆ Ent

• µi : E⊥
i → E⊥

i such that µi(⊥) = ⊥.

Function µi gives the reference of the entity pointed to by its argument. Each
µi is strict.

Let θ : LVar→ Ent⊥ be a valuation of the logical variables. The semantics
of the navigation expression α is given by [[·]] : Nav×(Ent⊥ ⇀ Ent⊥)×(LVar→
Ent⊥)→ Ent defined as:

[[nil]]µ,θ = ⊥
[[x]]µ,θ = θ(x)

[[α.a]]µ,θ = µ([[α]]µ,θ).

Let σi = (Ei, µi)(Ei+1, µi+1) · · · . For a given allocation sequence σ, let Eσi and
µσi denote the first and the second component in the i-th state of σ, respec-
tively. The semantics of Na``TL is defined in terms of the satisfaction relation
σ,N, θ |= φ, where σ is an allocation sequence, N ⊆ Eσ0 is the set of entities
initially new and θ is a valuation of the free logical variables of the formula φ.

Let Nσ
i ⊆ Ent (i.e., ⊥ /∈ Ni) denote the set of new entities in state i, defined

as Nσ
0 = N and Nσ

i+1 = Eσi+1\E
σ
i . Let θσi : LVar → Ent⊥ be a valuation of

the logical free variables in state i (of σ) where:

θσi (x) =

{
θ(x) if ∀k 6 i : θ(x) ∈ Eσk
⊥ otherwise.

Note that once a logical variable is mapped to an entity, then this association
remains along σ unless the entity dies, i.e., is deallocated.

5.3 ABA and HABA with references 131

The expressions x.a.a and y.a eventually
will become aliases F(x.a.a = y.a)

If x1.a
2 and x2.a are aliases, the entity

associated to y is deallocated before G(x1.a
2 = x2.a ∧ y alive

x1.a
2 and x2.a are not aliases anymore ⇒ (x1.a

2 = x2.aU y dead))

Eventually, v will point to an entity
in a non-empty cycle F(∃x : x 6= v ∧ x � v ∧ v � x)

Variables v and w always point to disjoint
parts of the heap (non-interference) G(∀x : v � x⇒ w �/ x)

Every entity reachable from v will be
eventually deallocated ∀x : (v � x⇒ Fx dead)

All and only the entities currently reachable (∀x : v � x⇒ Fx dead)∧
from v will be eventually deallocated (∀x : v �/ x⇒ Gx alive)

v’s list will be (and remains to be) ∀x : ∀y : (v � x ∧ x.a = y)
eventually reversed ⇒ FG(y.a = x)

A tautology x.a alive ⇒ x alive

Table 5.2: Some example properties expressible in Na``TL.

The satisfaction relation |= for Na``TL is defined as follows:

σ,N, θ |= α1 = α2 iff [[α1]]µσ
0 ,θ

= [[α2]]µσ
0 ,θ

σ,N, θ |= α new iff [[α]]µσ
0 ,θ
∈ N

σ,N, θ |= α1 α2 iff ∃k > 0 : (µσ0)k([[α1]]µσ
0 ,θ

) = [[α2]]µσ
0 ,θ

σ,N, θ |= ∃x:φ iff ∃e ∈ Eσ0 : σ,N, θ{e/x} |= φ
σ,N, θ |= ¬φ iff σ,N, θ 2 φ
σ,N, θ |= φ ∨ ψ iff either σ,N, θ |= φ or σ,N, θ |= ψ
σ,N, θ |= Xφ iff σ1, Nσ

1 , θ
σ
1 |= φ

σ,N, θ |= φUψ iff ∃i : (σi, Nσ
i , θ

σ
i |= ψ and ∀j < i : σj , Nσ

j , θ
σ
j |= φ).

Note that the proposition α1 α2. is satisfied in case [[α2]]µσ
0 ,θ

= ⊥ and

[[α1]]µσ
0 ,θ

can reach an entity with an undefined pointer.

Example 5.2.3. In Table 5.2 are reported some example properties expressible
in Na``TL.

5.3 ABA and HABA with references

Throughout this chapter, let M ∈ N be a global constant, M = {1, . . . ,M} and
M∗ = M ∪ {∗} where ∗ is a special distinguished symbol.

We now introduce the concept of cardinality which is the base of the ab-
straction mechanism we will develop (and use) throughout this chapter.

Definition 5.3.1. Let E ⊆ Ent . A function CE : E →M∗ is called cardinality
function (on E).

132 Chapter 5 – Dynamic References

A cardinality function CE associates to every entity in E a number (6M)
or the special symbol ∗. CE(e) = k 6 M means that the cardinality of e is
precisely k. CE(e) = ∗ means that the cardinality of e is some natural number
larger than M . If the set E is clear from the context we simply write C for CE .

Definition 5.3.2. The unitary cardinality function on E is the cardinality
function 1E : E →M∗ such that 1E(e) = 1 for all e ∈ E.

We need to define the sum on cardinalities:

n⊕m =

{
n+m if n,m ∈ {0, . . . ,M} and n+m 6M
∗ otherwise.

We lift the notion of cardinality to sets of entities as follows: if E ⊆ Ent then

C(E) = ◦
∑

e∈E C(e).

The notation ◦
∑

stands for a sum that uses the ⊕ operator defined above instead
of the standard sum on N. Moreover, for n ∈ N let

dneM =

{
n if n 6M
∗ otherwise.

The global constant M is mostly fixed and therefore if no confusion arise we
will not indicate it explicitly and we write dne instead of dneM . The cardinality
function imposes a distinction among entities. For the sake of exposition, in
this chapter, we identify three different classes:

• concrete entities: those with cardinality one;

• multiple entities: those with cardinality neither 1 nor ∗;

• unbounded entities: those with cardinality ∗.

For a set of entities E, we write E∗ for the subset of its unbounded entities, i.e.,
E∗ = {e ∈ E | CE(e) = ∗}. Bounded entities are either concrete or multiple.

5.3.1 Morphisms

A configuration γ = (E, µ, CE) represents a weighted directed graph where
E ⊆ Ent is the set of nodes, µ defines the set of arcs, and CE represents the
weights associated to the nodes. Figure 5.1 depicts three configurations as
weighted graphs: γ1, γ2 and γ3. Circles represent concrete entities. Filled
circles represents multiple/unbounded entities. Numbers (or stars) associated
with entities denote cardinalities.

Multiple and unbounded entities provide us with the possibility to abstract
from specific portions of the graph (configuration) thus obtaining a more com-
pact representation of the original graph. In this chapter, we apply the following
abstraction:

5.3 ABA and HABA with references 133

e2

e3

e0

e1

∗

e4

e8

e6

e7

e9

2

e5

e5
∗

concretization

abstraction

abstraction

concretization

∗

e
′′
3

∗

e8

e6

e9

e5

e2

γ3

γ2

e2

e
′
7

e
′
7

e
′
5

∗
e
′′′
5

γ1

3

e0

e1

e4

e
′
3

e
′′
7

∗

e8

e6

e9

e
′′
3

e0

e1

e4

e
′
3

e
′′
7

e
′
5

Figure 5.1: A pointer structure and some of its different levels of abstraction.

multiple and unbounded entities represent chains of more concrete
(i.e., with lower cardinality) entities.

The length of the chain represented by a multiple entity e must be consistent
with the cardinality of e. Unbounded entities represent chains of arbitrary
length strictly larger than M . For example, in configuration γ1 depicted in
Figure 5.1, entities e3, e5 and e7 are not concrete. In γ2, e3 has been replaced
by the chain of entities e′3 and e′′3 . Since Cγ1(e) = 2, this is the only allowed
concretization. We say that γ2 is a more concrete configuration than γ1, or
symmetrically, γ1 is more abstract than γ2. Moreover, the other difference
between γ1 and γ2 is that e7 in γ1 is replaced by the chain composed by e′7
and e′′7 in γ2. If we think of e7 as a chain of arbitrary length (larger than M),
this process corresponds to splitting this chain into a chain of arbitrary length
(i.e., e′7) followed by a concrete entity (i.e., e′′7). This phenomenon is sometimes
known in the literature as materialisation [100]. Note that we can split e7 in

134 Chapter 5 – Dynamic References

infinitely many ways. Any of such splitting yields a graph with a different level
of abstraction than the original one. The level of abstraction depends on the
number of abstract/concrete entities used. In the figure, the three different
abstraction levels are represented by planes of configurations. Thus, γ2 is more
concrete than γ1. Configuration γ3, where entity e5 of γ2 has been replaced
by the chain consisting of e′5, e

′′
5 , e5, and e′′′5 , is more concrete than γ2 (and

therefore than γ1).
There exists an intimate relation among γ1, γ2 and γ3. Any of these config-

urations can be obtained by the other by replacing some unbounded/multiple
entities by a chain of more concrete ones or vice-versa by replacing chains
of entities by more abstract ones. These considerations emphasise that these
configurations represent the same pointer structure but at different levels of
abstraction.

In this section, we try to give a general characterisation for such a relation
between configurations (i.e., same pointer structure but different abstraction
level) that will result in a notion of graph abstraction that we call, adopting
categorical jargon, morphism.

Preliminary notation. Throughout this chapter, let

Conf = 2Ent × (Ent ⇀ Ent)× (Ent ⇀ M∗) (5.1)

be the set of all configurations ranged over by γ. In the context of a configura-
tion (E, µ, C)2, it is sometimes convenient to consider instead of µ, the relation
≺ ⊆ E ×E induced by µ. This is defined as

≺ = {(e, µ(e)) | e, µ(e) ∈ Ent}.

Note that (⊥,⊥), (e,⊥), (⊥, e) /∈ ≺ for any e ∈ Ent . We write e ≺ e′ as
shorthand for (e, e′) ∈ ≺. Furthermore we will freely interchange (E, µ, C) and
(E,≺, C).

For e ∈ E, let indegree(e) = |{e′ | (e′, e) ∈ ≺}|. A sequence of E’s elements
e1, . . . , ej is a chain (of length j) if ei ≺ ei+1 for 1 6 i < j. A set of nodes
E′ ⊆ E with |E′| = j > 1 defines a chain of length j if there exists a bi-
jection f : {1, . . . , j} → E ′ such that f(1), . . . , f(j) is a chain. In this case,
we define first(E′) = f(1) and last(E ′) = f(j). E′ defines a pure chain if
∀e′ ∈ {f(2), . . . , f(j)} : indegree(e′) = 1 and f is unique. It follows from this
definition that chains consisting of only one element are pure. Moreover, let
E′ be a chain such that E′ ⊆ E⊥. Then, by the definition of ≺, if ⊥ ∈ E ′

then E′ = {⊥}. In the following, let � be the reflexive closure of ≺, i.e,
� = ≺ ∪ {(e, e) | e ∈ E}.

The next definition defines our notion of graph transformation.

2From now on, for a triple (E,µ, C) it is clear that the domain of C is E.

5.3 ABA and HABA with references 135

Definition 5.3.3. (morphism) Let γ1 = (E1,≺1, C1), γ2 = (E2,≺2, C2)
be two configurations. A morphism h from γ1 to γ2 is a surjective function
h : E1 → E2 such that:

1m. ∀e ∈ E2 : h−1(e) is a pure chain;

2m. ∀e, e′ ∈ E2 : e ≺2 e
′ ⇒ last(h−1(e)) ≺1 first(h−1(e′));

3m. ∀e, e′ ∈ E1 : e ≺1 e
′ ⇒ h(e) �2 h(e

′);

4m. ∀e ∈ E2 : C2(e) = C1(h−1(e));

We write h : γ1�−→γ2 or γ1�−
h−→γ2 if h is a morphism from γ1 to γ2.

Condition 1m allows to abstract only pure chains of entities by a single
entity. A single element is a chain of length 1. We require a chain to be pure
in order to maintain the branching topology of γ1. Conditions 2m and 3m
preserve the dependency of the entities when going from γ1 to γ2. Condition
4m requires that the sum of the cardinalities of entities mapped onto the same
element e must be equal to the cardinality of e.

The existence of a morphism between two configurations ensures the cor-
respondence of the abstract shape of the graphs represented by the configura-
tions. The correspondence is up to a certain degree of abstractness given by
the morphism itself.

Example 5.3.4. For the configurations in Figure 5.1, there exists a morphism
h21 : γ2�−→γ1 defined as: h21 � {e0, e1, e2, e4, e5, e6, e8, e9} = id and

h21(e
′
3) = e3 h21(e

′′
3) = e3

h21(e
′
7) = e7 h21(e

′′
7) = e7.

Moreover, there exists a morphism h32 : γ3�−→γ2 defined as:

h32 � {e0, e1, e2, e
′
3, e

′′
3 , e4, e6, e

′
7, e

′′
7 , e8, e9} = id

and
h32(e5) = e5 h32(e′5) = e5 h32(e′′5) = e5 h32(e′′′5) = e5.

Proposition 5.3.5. For a configuration γ there exists a morphism, called
identity morphism, idγ : γ�−→γ defined by idγ(e) = e for all e ∈ Eγ .

Proof. It is straightforward to verify that id γ satisfies all the conditions of
Def. 5.3.3.

Definition 5.3.6. Given two morphisms h : γ1�−→γ2 and h′ : γ2�−→γ3, the
composition h′ ◦h : γ1�−→γ3 is defined by (h′ ◦h)(e) = h′(h(e)) for all e ∈ Eγ1 .

The composition of two morphisms is also a morphism as stated by the
following:

136 Chapter 5 – Dynamic References

Proposition 5.3.7. If h : γ�−→γ ′ and h′ : γ′�−→γ′′ then h′ ◦ h : γ�−→γ′′.

Proof. It can be verified that h′ ◦h satisfies all the conditions of Def. 5.3.3.

Propositions 5.3.5 and 5.3.7 imply that the set of configurations equipped
with morphisms forms a category.

Example 5.3.8. We can define the morphism h31 : γ3�−→γ1 using the mor-
phisms in Example 5.3.4 as h31 = h21 ◦ h32.

Definition 5.3.9. Morphism h : γ1�−→γ2 is an isomorphism if and only if
there exists a morphism h′ : γ2�−→γ1 such that h′ ◦ h = idγ1 . In this case, h′

is the inverse of h and h is the inverse of h′.

If there exists an isomorphism between configurations γ1 and γ2 we say that
they are isomorphic and write γ1

∼= γ2.

5.3.2 Allocational Büchi Automata

Allocational Büchi Automata are basically generalised Büchi automata where
to each state a set of entities and a relation between entities are associated.
These entities, in turn, serve as valuations of logical variables and the references
as valuations for the navigation expressions.

Definition 5.3.10. An Allocational Büchi Automaton (ABA) A is a tuple
〈X,Q,E,−→, I,F〉, with

• X ⊆ LVar a finite set of logical variables;

• Q a (possibly infinite) set of states;

• E : Q → Conf a function yielding for each state q a configuration γq =
(Eq , µq,1Eq).

• −→⊆ Q×Q a transition relation;

• I : Q ⇀ 2Ent × (X ⇀ Ent) a partial function yielding for every initial
state q ∈ dom(I) an initial valuation (N, θ), where N ⊆ Eq is a finite set
of entities, and θ : X ⇀ Eq is a partial valuation of the variables in X ;

• F ⊆ 2Q a set of sets of accept states.

Notational conventions: we write (q,N, θ) ∈ I for I(q) = (N, θ) and q −→ q′

for (q, q′) ∈ −→ and γq for E(q) = γ. We adopt the generalised Büchi acceptance
condition, i.e, ρ = q0q1q2 · · · is a run of ABA A if qi −→ qi+1 for all i ∈ N
and |{i|qi ∈ F}| = ω for all F ∈ F . Let runs(A) denote the set of runs of
A. Run ρ = q0q1q2 · · · is said to accept the (unfolded) allocation sequence
σ = (Eq0 , µq0)(Eq1 , µq1)(Eq2 , µq2) · · · . Let

L(A) = {(σ,N, θ)|∃ρ = q0q1q2 · · · ∈ runs(A) : ρ accepts σ and I(q0) = (N, θ)}.

5.3 ABA and HABA with references 137

The essential difference w.r.t. ABA (without references) introduced in Defi-
nition 4.3.1 (cf. Section 4.3.1) is that states have associated a configuration
instead of just a set of entities. Note that every configuration in an ABA has
the unitary cardinality function. Thus, every entity in an ABA is concrete.

Notation on morphisms. In the previous definition, the set Q is introduced
because in the definition of the model checking algorithm it is necessary to
define the duplication of HABAs as this was done in Section 4.5.1 for HABA
without references. Apart from this very technical reason, it could be possible
to take as set of states a set of configurations dropping therefore the component
E. The introduction of Q makes it convenient from now on — both for ABA
as well as for HABA (cf, Definition 5.3.21) — to talk about morphisms on
states. In that case, we intend to refer to morphisms actually defined on the
configuration associated with those states. Therefore, in the rest of this chapter
we will freely interchange between states and configurations writing then h :

q�−→q′ for h : γq�−→γq′ and q�−h−→q′ for γq�−
h−→γq′ .

5.3.3 Reallocations and HABA

The HABAs (with references) that we will define in this section are intended
to be used as semantical models for programming languages. The execution of
statements is reflected in these automata by some modification on the structure
of the graph defined by a (configuration of a) state. Therefore, from state to
state, the abstract shape of the graph is only preserved for those parts not
involved in the execution of the statement. In particular, modifications in the
structure arise because:

i. entities may be allocated or deallocated (e.g., because of some creation/de-
letion mechanism of the language such as new in Java and delete in
C++);

ii. from state to state some references (pointers) between entities may change
(e.g., because of assignments);

iii. furthermore, multiple or unbounded entities may be disassembled into
several entities, giving a more concrete structure.

The first two cases correspond to real changes in the structure of the configu-
ration, whereas the third case corresponds to a change of representation of the
configuration in terms of the level of abstraction.

Example 5.3.11. Consider configurations γ ′1 and γ′2 in Figure 5.2. They
resemble configurations γ1 and γ2 of Figure 5.1: in particular, γ ′1 is the same
as configuration γ1, whereas γ′2 is a slight modification of γ2. Configuration γ′2
is obtained from γ′1 by the following alterations:

• replacing the reference between e0 and e1 by the reference between e0
and e4. This may reflect the execution of an assignment.

138 Chapter 5 – Dynamic References

∗

∗

e2 e3

e0 e1

e4

e8e6 e7

e9

2

e5

γ′1

e5

γ′2

∗e′′3

e0 e1

e4e′3

e′′7

∗e6 e′7

e9

e2

Figure 5.2: Two (configurations of) states not related by a morphism.

• Entity e8 does not exist in γ′2. This may reflect execution of a del state-
ment.

• Entities e′3 and e′′3 are materialised from e3. This usually is not a direct
consequence of the execution of a statement. However, it can be consid-
ered as a kind of rearrangement of the shape of the configuration that can
be useful in particular situations (cf. the assignment rule of the symbolic
semantics in Section 5.6.4).

Note that there does not exist a morphism between γ ′1 and γ′2 because the two
graphs do not represent the same pointer structure.

These considerations show that, between states related by a transition in
the automaton, we need a weaker notion of correspondence than the one defined
by a morphism. Namely, the correspondence must be only partial, in the sense
that we might have only correspondence of a subgraph but not of the complete
graph. Moreover, in order to faithfully model modification iii), for every entity
in a state we need to associate possibly more than one entity of the other
state. This weaker notion of correspondence is captured by the definition of
reallocation that is introduced below.

Preliminary notation. Given two sets A1, A2 and a relation R ⊆ A1×A2,
if a ∈ A1 we indicate by R(a) = {a′ ∈ A2 | (a, a′) ∈ R} and if a ∈ A2 we write
R−1(a) = {a′ ∈ A1 | (a′, a) ∈ R}. For a subset A ⊆ A1, we write R(A) =⋃
a∈AR(a).

A multiset M of a given set A is a function M : A → N. For a ∈ A, the
imageM(a) is called the multiplicity of a inM. We write a ∈ M ifM(a) 6= 0
(and a /∈ M if M(a) = 0). The sum of two multisets M1 and M2 of A,
denoted by M1 +M2, is defined as (M1 +M2)(a) =M1(a) +M2(a) for all
a ∈ A.

Moreover, given a configuration γ we extend to sets the relation ≺γ as
follows: let E,E′ ⊆ E⊥

γ then

E ≺γ E
′ ⇔ (E = E′ = {⊥}) ∨ (∀e ∈ E : ∃e′ ∈ E′\{⊥} : e ≺γ e

′) (5.2)

5.3 ABA and HABA with references 139

We now introduce the concept of reallocation that will be essential through-
out this chapter.

Definition 5.3.12. (reallocation) Let (E1,≺1, C1), (E2,≺2, C2) be two con-
figurations. A reallocation λ is a function λ : E⊥

1 ×E
⊥
2 →M∗ such that:

1. for all e ∈ E1 : C1(e) = ◦
∑

e′∈E⊥
2
λ(e, e′)

2. for all e ∈ E2 : C2(e) = ◦
∑

e′∈E⊥
1
λ(e′, e)

3. for all e ∈ E1 : |{e′∈E2 | λ(e, e′)=∗}|61 and |{e′∈E2 | λ(⊥, e′)=∗}|=0

4. for all e ∈ E1 : {e′ ∈ E⊥
2 | λ(e, e

′) 6= 0} is a chain;

5. for all e ∈ E2 : {e′ ∈ E⊥
1 | λ(e

′, e) 6= 0} is a chain.

We write λ : (E1,≺1, C1) =� (E2,≺2, C2) or (E1,≺1, C1) =
λ
� (E2,≺2, C2) if

there exists a reallocation λ from (E1,≺1, C1) to (E2,≺2, C2).

A reallocation is a multiset3, with range M∗. Accordingly, we write (e, e′) ∈
λ if λ(e, e′) 6= 0 and (e, e′) /∈ λ if λ(e, e′) = 0. Furthermore, it is often
convenient to treat λ as a relation over Ent × Ent × M∗. In this case, we
write (e, e′, n) ∈ λ if and only if λ(e, e′) = n. Another notation we use
(when convenient) is: λ(e) = {e′ | (e, e′) ∈ λ} and λ−1(e) = {e′ | (e′, e) ∈ λ}.
Finally we write dom(λ) = {e 6= ⊥ | ∃e′ 6= ⊥ : (e, e′) ∈ λ} and symmetrically
cod(λ) = {e 6= ⊥ | ∃e′ 6= ⊥ : (e′, e) ∈ λ}.

The element ⊥ is used by the reallocations in order to model birth and
death. More precisely, the birth of an entity e ∈ E2 is modelled by relating
it to ⊥, i.e. λ(⊥, e) 6= 0. Symmetrically, λ models the death of an e ∈ E1 by
relating it to ⊥, i.e., λ(e,⊥) 6= 0.

A reallocation allows to change dependencies between entities, in fact if
e1 ≺1 e2 it is not required that entities in λ(e1) precede entities in λ(e2) ac-
cording to≺2 (as is enforced by the definition of morphism, cf. Definition 5.3.3).
The above definition requires the cardinality of entities in the source state to
be consistent with the multiplicity of the outgoing arcs (condition 1). Sym-
metrically, condition 2 forces consistency between the multiplicity of outgoing
arcs and the cardinality of entities in the target state. Condition 3 is meant to
restrict the amount of nondeterminism derived by unbounded entities and to
avoid the creation of unbounded entities. The first part of this condition can
be rephrased by saying that the unknown cardinality of an unbounded entity
e is reallocated only in another unbounded entity e′ whereas for every other
entity in λ(e)\{e′} the precise weight is known. By conditions 4 and 5, the
image as well as the inverse image of entities under λ are chains.

Example 5.3.13. Figure 5.3 shows two possible reallocations between (con-
figurations of) states. Note that Definition 5.3.12 does not exclude the crossing

3Strictly speaking it is slightly different since it may give multiplicity ∗ to a pair (e, e′).

140 Chapter 5 – Dynamic References

132

3

2
1

1

1
1

3 2

1 2 1 1 1

1131

3 1

e3e2e1

q

q′
e4 e5

q′

q
e4e3e2e1

e5 e6 e7

Figure 5.3: Reallocation examples.

of relations between entities from one state to the other. For example, in the
reallocation depicted on the left of the figure part of e2 is reallocated to e4
while part of e1 (that precedes e2) is reallocated to e5 (that is preceded by e4).
It is also not difficult to see that the (configuration of) states in Figure 5.2 are
related by a reallocation.

Lemma 5.3.14 (impartiality). Let γ, γ ′ be two configurations. If γ =
λ
� γ′

then:

• ∀e ∈ Eγ′ : (λ(⊥, e) 6= 0 ⇔ ∀e′ ∈ Eγ : λ(e′, e) = 0) (Common Birth)

• ∀e ∈ Eγ : (λ(e,⊥) 6= 0 ⇔ (∀e′ ∈ Eγ′ : λ(e, e′) = 0). (Common Death)

Proof. By contradiction assume (Common Birth) does not hold, i.e., there exists
e ∈ Eγ′ and e ∈ Eγ such that ⊥, e′ ∈ λ−1(e). By condition 5 of the definition of
reallocation, λ−1(e) is a chain, but this is impossible since ⊥ cannot be related
with entities to form a chain. Symmetrically, λ satisfies (Common Death) since
for all e ∈ Eγ by condition 4, λ(e) is a chain and therefore cannot contain at
the same ⊥ and some entities of Eγ′ .

The previous lemma describe the impartiality property that a reallocation
enjoys w.r.t. birth and death of entities (Common Birth) says that if an entity
is born, it cannot be related with any entity except than ⊥. Symmetrically,
(Common Death) states that if an entity dies than it can be related only with
⊥. The combination of condition 1 of the reallocation definition and (Common
Death) (and symmetrically condition 2 and (Common Birth)) forces to transfer
the complete cardinality of e by λ(e,⊥) (and symmetrically λ(⊥, e)).

Example 5.3.15. The reallocation depicted on the left part of Figure 5.4
violates both (Common Birth) and (Common Death). In q, e1 has two outgoing
arcs. One would indicate that part of e1 dies whereas the other arc reallocates
part of e1 onto e4. Similarly, the two arcs starting from e2 and e3 and reaching
e5 denote that the latter is old . However, the incoming arc from ⊥ indicates
that e5 represents also some new entities. (Common Birth) and (Common Death)

5.3 ABA and HABA with references 141

132

1

3 1

3

2

2

2

132

4

2
1

1
1

3

1

2

e3e2e1

e4

⊥

e5
q′′

q

e6

e3e2e1

e4

⊥

e5
q′

q

Figure 5.4: On the left a reallocation violating (Common Birth)/(Common
Death); on the right a reallocation satisfying both these properties.

state that, by conditions 4 and 5, a reallocation rules out explicitly these kinds
of ambiguities. The reallocation on the right part of the same figure satisfies
(Common Birth) and (Common Death). e1 dies by mapping the complete
cardinality onto ⊥. Similarly e6 is new since its cardinality is all provided by
⊥.

The relation between morphisms and reallocations is described by the fol-
lowing:

Proposition 5.3.16. Let γ1 and γ2 be two configurations. If γ1�−
h−→γ2 then

γ1 =
λ
� γ2 where let e ∈ Eγ1 and e′ ∈ Eγ2 :

λ(e, e′) =

{
Cγ1(e) if e′ = h(e)
0 otherwise.

Proof. See Appendix B.1.

Definition 5.3.17. If γ1 =
λ
� γ2 and γ′1 =

λ′

=� γ′2 with Cγ′
1

= Cγ′
2

= 1, we say
that λ′ is a concretion of λ, denoted λ′ � λ, if and only if there exist h1, h2

such that:

1. γ′1�−
h1−−→γ1 and γ′2�−

h2−−→γ2

2. λ : (e1, e2) = ◦
∑

(e1,e2)=(h1(e′1),h2(e′2)) λ
′(e′1, e

′
2).

3. (No-Cross) ∀e, e′ ∈ Eγ′
1
:

h1(e) = h1(e
′)∨h2(λ

′(e)) = h2(λ
′(e′)) ⇒ (e ≺γ′

1
e′ ⇔ λ′(e) ≺γ′

2
λ′(e′)).

4. ∀e ∈ Eγ′
2

: (Cγ2(h2(e)) = ∗ ⇒ e ∈ cod(λ′));

142 Chapter 5 – Dynamic References

h2

γ2

γ′
2γ′

1

h1

λ

λ′

Concrete level

Abstract levelγ1

Figure 5.5: Commutative diagram for concretion of reallocations.

e3
e4

e5

e9

e8

e7

e6

e1

e2

λ

λ′

h1

h2

γ′
i

γ′
2

γ1

γ2

Figure 5.6: Incompatibility between new entities of the symbolic w.r.t. the
concrete level.

A concretion λ′ of λ via h1 and h2 is a reallocation that makes the diagram
depicted in Figure 5.5 commute. Informally, λ′ can be seen as a reallocation
that agrees with λ, but that is defined on a concrete version of γ1 and γ2, i.e.,
λ′ is defined on configurations γ ′1 and γ′2 related to γ1 and γ2 by morphisms.
Condition 4 says that if an entity e is projected on an unbounded one then e
must be old. This gives a correspondence between the number of new entities in
γ2 and γ′2. A reallocation and its concretions have the same behaviour in terms
of fresh entities (cf. Lemma 5.3.19). Note that this condition is necessary. In
fact, consider the reallocation represented in Figure 5.6 assuming that M = 2
and Cγ1(e1) = Cγ2(e2) = ∗. We have λ′ � λ, and although e9 ∈ h

−1
2 (cod(λ)),

it is new. This circumstance is ruled out by condition 4. Condition (No-Cross)
prevents the concretion to change the order of entities that are mapped onto a
multiple/unbounded entity or that have as image the same multiple/unbounded
entity. In fact, since a multiple or an unbounded entity corresponds to a chain
we want that the order of the concrete entities corresponding to this chain
is not modified after the reallocation. For example, in Figure 5.7 (up), λ′ is
a concretion of the reallocation in the right part of Figure 5.3, whereas λ′′

(down) is not since it violates (No-Cross). In particular in Figure 5.7 (down),
entities e′5, e

′′
5 , e

′′′
5 are mapped on the same abstract entity e5. However, their

order does not correspond to the order of the (concrete) inverse image e′1, e
′
2, e

′′
2 .

Vice-versa, the order of the image of e′2, e
′′
2 does not correspond to the order of

their image e′′′5 and e′5. The same phenomenon occurs for e′′′2 , e′3, e
′
6 and e′′6 .

5.3 ABA and HABA with references 143

e4

e7

e6

e5
e′′′2

e′′2

e3

e′3

e′4

e′5

e′′5

e′′′5

e′6

e′′6

e′7

λ

e′1

e′2 λ′′

e2

e1

e2

e4

e7

e6

e5
e′′′2

e3

e′3

e′4

e′5

e′′5

e′′′5

e′6

e′′6

e′7

λ

e′1

e′′2e′2

λ′

e1

Figure 5.7: Concretions prevent reshuffling of entities in the concrete states.

A consequence of constraint (No-Cross) is that given an abstract entity
e ∈ Eγ1 , its associated concrete entities — i.e., all the elements of the set
h−1

1 (e) — enjoy a common fate: either all of them survive the reallocation or
all of them die. This fact is formalised in the following:

Lemma 5.3.18 (common fate). If γ1 =
λ
� γ2 and γ′1 =

λ′

=� γ′2 and λ′ � λ,
then

∀e ∈ Eγ1 : ∀e′, e′′ ∈ h−1
1 (e) : (λ′(e′) = {⊥} ⇔ λ′(e′′) = {⊥}).

Proof. By contradiction. Assume there exist e′, e′′ ∈ h−1
1 (e) such that λ′(e′) =

{⊥} and λ′(e′′) = {ẽ} 6= {⊥}. We can choose e′, e′′ such that e′ ≺γ′
1
e′′ or

e′′ ≺γ′
1
e′. Assume e′ ≺γ′

1
e′′. By (No-Cross), since h1(e

′) = h1(e
′′) = e

and e′ ≺γ′
1
e′′ it follows λ′(e′) ≺γ′

2
λ′(e′′) which — by (5.2) — implies that

⊥ ≺γ′
2
ẽ that is impossible. On the other hand, assume e′′ ≺γ′

1
e′ that by

(No-Cross) implies λ′(e′′) ≺γ′
2
λ′(e′). But then by (5.2) there must exists a

e′′′ ∈ Eγ′
2
∩λ′(e′) such that ẽ ≺γ′

2
e′′′. But again this is a contradiction because

Eγ′
2
∩ λ′(e′) = ∅.

144 Chapter 5 – Dynamic References

e3

e1

e2

λ

λ′

γ′
2

γ1

γ2

γ′
1

h1

h2
e4

e5
e6 e7

e8

e9

Figure 5.8: λ′ violates the common fate property.

Note that the property of common fate does not hold in absence of (No-
Cross). The reason has to be sought among the large variety of consequences
yielded by unbounded entities. Consider Figure 5.8, and assume M = 2. Since
λ(e1, e2) = ∗, the second condition of � does not reveal that e6 is deallocated
because λ(e3, e7) ⊕ λ(e4, e8) ⊕ λ(e5, e9) = ∗. However, λ′ does not satisfies
(No-Cross) because e6 ≺γ′

1
e5 but λ′(e6) ⊀γ′

2
λ′(e5). Therefore λ and λ′ do not

have the same behaviour w.r.t. deallocation of entities related by morphisms.

Lemma 5.3.19. If γ1 =
λ
� γ2 and γ′1 =

λ′

=� γ′2 and λ′ � λ via h1 and h2 then:

a) Eγ′
2
\cod(λ′) = h−1

2 (Eγ2\cod(λ))

b) E∗
γ2 ⊆ cod(λ).

Proof. See Appendix B.1.

The relation � is neither reflexive nor symmetric, but, it is transitive:

Lemma 5.3.20 (� transitivity). Let q1 =
λ
� q2, q

′
1 =

λ′

=� q′2 and q′′1 =
λ′′

=� q′′2 .
Then:

(λ′′ � λ′ ∧ λ′ � λ) ⇒ λ′′ � λ.

Proof. See Appendix B.1

We are now in the position to define the enhancement of HABAs able to
deal with pointer structures.

Definition 5.3.21. A High-level ABA (HABA) with references H is a tuple
〈X,Q,E,−→, I,F〉 with X , Q, F as in Def. 5.3.10, and

• E : Q→ Conf a function that associates to each state q ∈ Q a configu-
ration γq = (Eq , µq, CEq).

• −→⊆ Q× (Ent × Ent ⇀ M∗)×Q, such that if q −→λ q
′ then γq =

λ
� γq′ .

5.3 ABA and HABA with references 145

e1

q1

q2

e2e1
q1

e1
e2

q3

Figure 5.9: Example HABA with references modelling a stack.

• I : Q ⇀ 2Ent × (X ⇀ Ent) a partial function yielding for every initial
state q ∈ dom(I) an initial valuation (N, θ), where N ⊆ (Eq\E

∗
q) is a

finite set of (bounded) entities, and θ : X ⇀ Eq is a partial valuation of
the variables in X .

Whereas in an ABA state we only have concrete entities, this is no longer
true in a HABA: the corresponding enforcing condition on the cardinality func-
tion of configurations (of an ABA) is now relaxed. The condition N ⊆ (Eq\E∗

q)
on the initial state is needed since we want to keep track of the number of new
entities in every state. For HABAs without references (cf. Definition 4.3.4)
this was not necessary as the black-hole is not a proper entity.

Sometimes it is useful to specify, the precise range of the cardinalities used
in a given HABA H. We write C(H) = M if M is the global upper bound on
the cardinality of the entities, i.e., if for all q ∈ QH, cod(Cq) ⊆M∗.

Example 5.3.22. Figure 5.9 shows an example HABA with references. It
models a system where at every step either an entity is created or deallocated.
Creation/deletion follows a LIFO policy (i.e., the system modelled is a stack).
From state to state there are two transitions: one with a dashed reallocation
that models creation (and insertion in the stack), and a transition with a dotted
reallocation that models the deletion (and extraction from the stack). For
example, in state q3, entities that are created are accumulated in e2 (following
the dashed reallocations). The dotted reallocation extracts entities by splitting
e2 and remapping it on e1 and e2 respectively. Entity e1 is not remapped and
therefore deallocated. The system starts with only one entity in the initial state
q1. The accept state is q2, therefore the automaton models a system in which
every computation has infinitely many times a stack with two entities.

HABA with references are used to generate models for Na``TL. The mech-
anism exploited here is similar to the one used in Chapter 4 for A``TL and
HABA without references.

Definition 5.3.23. A folded allocation sequence is an infinite alternating se-
quence

(E0, µ0,1E0)λ0(E1, µ1,1E1)λ1 · · ·

146 Chapter 5 – Dynamic References

where for i > 0, (Ei, µi,1Ei) =
λi=� (Ei+1, µi+1,1Ei+1).

Note that because of the unitary cardinality functions, in the previous def-
inition, λi (i > 0) may associate at most one entity in Ei+1 to an entity in Ei.
Another consequence is that folded allocation sequences can be used together
with to obtain an alternative semantics for Na``TLdenoted by |=f . This is
done by giving a new definition for Nσ

i and θσi (defined in page 130) as follows.
For an allocation triple (σ,N, θ) let:

Nσ
i =

{
N if i = 0
Eσi \cod(λσi−1) otherwise.

(5.3)

θσi =

{
θ if i = 0
λσi−1 ◦ θ

σ
i−1 otherwise

(5.4)

where the composition between a (concrete) reallocation

(E, µ,1E) =
λ
� (E′, µ′,1E′)

and a valuation of the logical variables θ̂ is given by:

λ ◦ θ̂(x) =

{
e if θ̂(x) 6= ⊥ and λ(θ̂(x), e) = 1
⊥ otherwise.

The semantics given by |=f is equivalent to |=u, hence folded and unfolded
allocation sequences are equivalent models for Na``TL (the reader is referred
to Section 4.2.4 for details).

Runs of a HABA generate folded allocation sequences. The correspondence
between allocation triples and runs of HABA is given in terms of morphisms
in the following definition.

Definition 5.3.24 (generator). A run ρ = q0λ0q1λ1 · · · of HABA H =
〈X,Q,E,−→, I,F〉 generates an allocation triple (σ,N, θ), where σ = γσ0 λ

σ
0γ

σ
1 · · ·

is a folded allocation sequence, if there is a generator, i.e., a family of morphisms
hi from γσi to γqi satisfying for all i > 0:

1. λσi � λi via hi and hi+1;

2. I(q0) = (N ′, h0 ◦ θ) and N = h−1
0 (N ′);

By condition 1, the morphism in the generator must preserve the realloca-
tions in the run. In particular, λσi is a concretion of λi (for i > 0). Condition 2
imposes a correspondence between the set of initial entities and the interpreta-
tion of the logical variables in the state q0 and the first state of the allocation
sequence.

Runs of a HABA are defined in the same way as for ABA. Let runs(H)
denote the set of runs of H and

L(H) = {(σ,N, θ) | ∃ρ ∈ runs(H) : ρ generates (σ,N, θ)}.

5.4 Relating HABA and ABA 147

5.4 Relating HABA and ABA

In this section, we study how to relate ABAs and HABAs with references w.r.t.
their generated languages and, therefore, the set of Na``TL-formulae that they
satisfy. First of all, we introduce a simulation preorder (denoted v) between
a HABA and a concrete one (i.e., a HABA where every entity is concrete).
The intuition behind v is that whenever H v H′, then H′ can simulate all
behaviours of H, but the converse does not necessarily hold. That is, H′ may
exhibit more behaviours than H.

Definition 5.4.1. Let H = 〈X,Q,E,−→, I,F〉 such that C(H) = 1 and H′ =
〈X,Q′, E′,−→′, I ′,F ′〉.

1. A binary relation v ⊆ Q× (Ent ⇀ Ent)×Q′ is a simulation if and only
if for all q1 vh1 q

′
1 it holds:

a) q1�−
h1−−→q′1

b) if q1 −→λ q2 then ∃λ′, h2 such that

i) q′1 −→λ′ q′2 ∧ q2 vh2 q
′
2

ii) λ� λ′ via h1, h2

2. H′ simulates H (written H v H′) if and only if there exists a simulation
v ⊆ Q× (Ent ⇀ Ent)×Q′ such that:

a) for all q ∈ I there exists q′ ∈ I ′ and h with I ′(q′) = (N, h ◦ θ) such
that:

– q vh q′ and

– I(q) = (h−1(N), θ);

b) there exists a bijective ψ : F → F ′ such that

∀F ∈ F : (∀q ∈ F : (∃q′ ∈ ψ(F), ∃h : q vh q′)).

Hence, a state q′ simulates q if they represent the same pointer structure
(condition 1.a). Every transition of q can be simulated by q′ with a proper
transition whose reallocation is a concretion of the reallocation of the transi-
tion of q. The target states simulate each other and (because of �) have a
corresponding set of new entities (condition 1.b).

The second part of the previous definition specifies when a HABA simu-
lates another one. Condition 2.a) requires that every initial state in H has a
corresponding (simulating) initial state in H′ and there is correspondence in
the initial valuation. Condition 2.b) says that every accept state in q ∈ F ∈ F
is simulated by an accept state q′ ∈ F ′ ∈ F ′. The bijective function ψ enforces
that every F ′ ∈ F ′ is considered so that the generalised Büchi acceptance
condition of H is ensured to exists in H′.

148 Chapter 5 – Dynamic References

e3 e4e2 e5 e6

e1

e1 e2

e1 e3e2

e1 e3 e4e2

e1 e3 e4e2 e5

H

v

e1

e3e1

*

e1 H′

e2

e1 e2

e1 e3e2

2
e2

e1 e3

Figure 5.10: A HABA simulating the one in Figure 5.10

Example 5.4.2. The HABA H depicted in Figure 5.10 (left) models a FIFO
queue. In the initial state there is only one entity. At every step either a
new entity is created and enqueued (transitions with dashed reallocations), or
the system nondeterministically performs a step where the first entity of the
queue is extracted and deallocated (transitions with dotted reallocations). H
is infinite-state since the queue can grow unboundedly. The HABA H′ (where
C(H′) = 2), depicted on the right side of the figure, simulates H.

The comparison between HABAs and ABAs involves also a notion of iso-
morphic folded allocation sequences. The concept is introduced in the next
definition.

Definition 5.4.3.

• Two folded allocation sequences σ1, σ2 are isomorphic (written σ1
∼= σ2)

if there exists a family of isomorphisms (hi)i∈N such that for all i > 0,

1. hi : σ1[i]�−→σ2[i]

5.4 Relating HABA and ABA 149

2. λσ1

i � λσ2

i via hi, hi+1.

• Two allocation triples (σ,N, θ) and (σ′, N ′, θ′) are isomorphic (written
(σ,N, θ) ∼= (σ′, N ′, θ′)) if σ ∼= σ′, dom(θ) = dom(θ′), N ′ = h0(N) and
θ′ = h0 ◦ θ.

Isomorphic allocation triples are the same up to renaming of entities. It is
therefore not surprising that they satisfy the same set of Na``TL formulae, as
stated in the next result.

Proposition 5.4.4. For Na``TL formula φ and folded allocation sequence
σ, σ′:

(σ,N, θ) ∼= (σ′, N ′, θ′) ⇒ (σ,N, θ |= φ iff σ′, N ′, θ′ |= φ).

Proof. Straightforward by induction on the structure of φ.

The next important proposition states the relation between the language of
HABAs related by a simulation relation.

Theorem 5.4.5. If H v H′ then L(H) ⊆ L(H′).

Proof. See Appendix B.1.

In case of HABAs without references defined in Chapter 4 we had equality
between the language of H and Exp(H). Here, the situation is more complex
because of the abstraction by unbounded entities. H′ describes more behaviours
of H, or equivalently we can say that, H′ models spurious behaviours that
are not actually present in the concrete system at hand. Nevertheless, the
definition of simulation provides a means to compare different models w.r.t.
the satisfiability of Na``TL formulae.

Definition 5.4.6. Given a HABA H and a Na``TL-formula φ we say that:

• φ is H-satisfiable if there exists (σ,N, θ) ∈ L(H) such that σ,N, θ |= φ;

• φ is H-valid if for all (σ,N, θ) ∈ L(H) : σ,N, θ |= φ.

The previous definition corresponds to the one given for A``TL-formulae.
It implies that φ is H-valid (A-valid) if and only if ¬φ is not H-satisfiable (A-
satisfiable). For ABA A the definition for A-satisfiability and A-validity can
be given in precisely the same way.

The relation between models related by a simulation relation is given by
the following result.

Proposition 5.4.7. For HABAs H and H′ such that H v H′ and Na``TL-
formula φ:

φ is H′-valid⇒ φ is H-valid.

Proof. Straightforward from Theorem 5.4.5.

The converse does not hold as illustrated in the next example.

150 Chapter 5 – Dynamic References

Example 5.4.8. Consider the following formula:

φ ≡ G[X(∃x : x new ∧ x.a 6= nil) ∨ (∃y : y.a = nil ∧ Xy dead)] (5.5)

expressing that in every step of the system either a new entity is created (which
is enqueued) or an existing entity not pointing to any other one (i.e., the first
of the queue) is deallocated. It is easy to see that φ holds in every allocation
sequence generated by a run of H in Figure 5.10, i.e., φ is H-valid. However, φ
is not H′-valid because, in the second state of H′ there exists a self loop with
a reallocation mapping every entity to itself. Note that H does not have such
transition. By taking this self-loop no entities are created or destroyed. Hence,
φ does not hold in every allocation sequence generated by H′.

Relating folded and unfolded allocation sequences. As for A``TL, we
can relate folded and unfolded allocation sequences with references in a straight-
forward manner. The next definition introduces a special kind of reallocation
which is useful in order to establish this relation4.

Definition 5.4.9. For two configurations γ and γ ′ such that C � Eγ ∩ Eγ′ =

C′ � Eγ ∩ Eγ′ , a reallocation γ =
λ
� γ′ is called identity reallocation if for all

e ∈ Eγ and e′ ∈ Eγ′ :

id (e, e′) =

{
Cγ(e) if e = e′

0 otherwise.

We indicate an identity reallocation by id .

Two configurations (and therefore states) related by the identity realloca-
tion may differ only in the links between entities and because some entity has
born or has died. The condition on Eγ and Eγ′ says that an entity not related
to itself must be related to ⊥ (in which case is born or dies).

For an unfolded allocation sequence σ = (E0, µ0,1)(E1, µ1,1)(E2, µ2,1) · · ·
let id(σ) be the folded allocation sequence

id(σ) = (E0, µ0,1)id0(E1, µ1,1)id 1(E2, µ2,1)id2 · · ·

where (Ei, µi,1) =
idi=� (Ei+1, µi+1,1). The two sequences satisfy the same set

of Na``TL formulae: one on the unfolded semantics of Na``TL |=u and the
other on the folded version, i.e., |=f :

Proposition 5.4.10. For any Na``TL formula φ we have σ,N, θ |=u φ iff
id (σ), N, θ |=f φ.

Proposition 5.4.11. For every ABA A there exists a HABA H such that
given a Na``TL formula φ, we have φ is A-valid if and only if φ is H-valid.

4It will also be useful for describing reallocations in the transitions of the symbolic oper-
ational semantics (cf. Section 5.6.4).

5.5 A language for navigation 151

Proof. Let A = 〈X,Q,E,−→, I,F〉, then we define H = 〈X,Q,E,−→′, I,F〉
where −→′ is such that

q −→ q′ ⇔ q −→id q
′

where γq =
id
=� γq′ . Hence H is defined as A with an identity reallocation on

the transitions. It is clear that

L(H) = {(σ′, N ′, θ′) | (σ′, N ′, θ′) ∼= (id (σ), N, θ) and (σ,N, θ) ∈ L(A)}.

Therefore from Propositions 5.4.10 and 5.4.4 it follows that every A-valid for-
mula φ is also H-valid and vice-versa.

We indicate the HABA H defined in the proof of Proposition 5.4.11 by
id (A). By Propositions 5.4.7 and 5.4.11, in order to verify a Na``TL-formula
φ on an A we can alternatively verify it on a HABA H that simulates id (A).
This is particularly interesting when A is an infinite model whereas H is finite.
In fact provided we have an effective method to check the validity of Na``TL-
formulae on finite HABA this can be used to extend the methodology to infinite-
state systems.

Example 5.4.12. The formula φ ≡ GF(∀x∀y : x = y) stating that the queue
will have infinitely often only one entity is H′-valid because only H′ accept
state has only one entity, and in an accepting run it is visited infinitely often.
It follows that φ is also H-valid.

5.5 A language for navigation

In this section we introduce a simple programming language, called Ln, dealing
with pointers. It is an extension of the language L defined in Section 4.4. Ln
gives some insight into the kind of systems that can be modelled by HABA
with references. Similar to L, we will define the semantics of Ln in terms
of ABA and HABA. The first semantics is very concrete and intuitive, but
infinite-state, whereas the second is symbolic and finite. In Section 5.6.6, we
will study the relation between the two semantics.

5.5.1 Syntax

Let nil be a special syntactic constant. For PVar a set of program variables
with v, vi ∈ PVar, and such that PVar ∩ LVar = ∅, the set of statements of
the language Ln is given by:

(p ∈)Ln ::= decl v1, . . . , vn : (s1 ‖ · · · ‖ sk)

(s ∈)Stat ::= new(α) | del(α) | α := α | skip | s; s

| if b then s else s fi | while b do s od

(α ∈)Nexp ::= nil | v | α.a

(b ∈)Bexp ::= α = α | b ∨ b | ¬b

152 Chapter 5 – Dynamic References

A program p is thus a parallel composition of a finite number of statements
preceded by the declaration of a finite number of global variables.

Informal semantics of Ln. new(α) creates (i.e., allocates) a new entity
that will be referred to by the expression α. If α is the only way to refer to
entity e, say, then after the execution of new(α), e (being not reachable) is
automatically garbage collected together with the entities reachable from e.
del(α) destroys (i.e., deallocates) the entity associated to α, and makes α and
every other pointer pointing to it undefined. The assignment α1 := α2 passes
the reference held by α2 to α1. Again, the entity α1 was referring to might
become unreferenced and therefore may be garbage collected. As assignments
create aliases they introduce non-trivial side-effects. Sequential composition,
while loop, skip, and conditional statement have the standard interpretation.
Meaningless statements and expressions as new(nil), del(nil), nil.a will be
ruled out at the semantical level (cf. Section 5.6).

The differences between Ln and the language L (studied in Chapter 4) are
essentially two:

• the possibility to use navigation expressions instead of simply program
variables;

• the use of automatic garbage collection. This will become clear when we
define the semantics.

Example 5.5.1. The following Ln program is a classical example often re-
ported in the literature (e.g., see [12, 94, 100]). It reverses a list originally
pointed to by the variable v.

decl v, w, t :
w := nil ;
while v 6= nil do

t := w;
w := v;
v := v.a;
w.a := t;

od;
t := nil ;

5.5.2 Adding program variables to Na``TL

Na``TL expresses properties about logical variables LVar. Given a program,
p ≡ decl v1, . . . , vn : (s1‖ · · · ‖sk), in principle it is not possible to talk about vi
(1 6 i 6 n) in Na``TL-formulae. For software verification this would represent
a severe limitation. We would like to add this feature to Na``TL so that prop-
erties involving the (declared) program variables DeclPVar = {v1, . . . , vn} ⊆

5.6 Operational semantics 153

PVar (with vi 6= vi for i 6= j) of p can be naturally formulated. To model
DeclPVar , we use a special set of entities PV = {ev1 , . . . , evn} ⊆ Ent that are
alive in every state of the allocation sequence. We assume the existence of a set
of free logical variables DeclLVar = {xv1 , . . . , xvn} such that the interpretation
function is:

ϑ(xvi) = evi ∀1 ≤ i ≤ n. (5.6)

Notice that since entities in PV are alive in every state of the allocation se-
quence, the interpretation ϑ � PV will remain fixed.

The value of the logical variables xvi is not very interesting when writ-
ing properties about programs. Rather we are interested in the entity that a
program variable v points to, that is, µ(ϑ(xvi)). Thus it is convenient to define

vi ≡ xvi .a ∀vi ∈ DeclPVar (5.7)

as syntactic sugar in the logic. This suffices us to express properties about
program variables.

Furthermore, we would like to exclude PV from the set of entities considered
in the domain of quantifiers. Again this is done by adding syntactic sugar.
Throughout Sections 5.5 and 5.6, we consider the formula ∃x : φ as shorthand
for

∃x : (x 6= xv1 ∧ · · · ∧ x 6= xvn)⇒ φ. (5.8)

Example 5.5.2. The configurations (of the states) of the program in Exam-
ple 5.5.1 — using entities PV ={et, ev, ew} and the logical variables DeclLVar =
{xt, xv , xw} to refer to them — are shown in Figure 5.11. It represents the ex-
ecution of the loop manipulating a list with three elements.

The main property we want to verify for the program described in Exam-
ple 5.5.1 is:

v’s list will be eventually reversed

that can be expressed in Na``TL (as we have seen before) by:

∀x : ∀y : (v x ∧ x.a = y)⇒ FG(y.a = x).

Moreover, another plausible property could be:

all the elements in v’s list will be eventually contained in w’s list

which is expressed by:

∀x : (v x)⇒ FG(w x).

5.6 Operational semantics

In this section, we describe how ABAs and HABAs can be used to give a
semantics to programs in our example programming language Ln.

154 Chapter 5 – Dynamic References

xt

t

xv

v

e3e2e1

xw

w

xv

v

e3e2e1

xw

w

xw

xt

t

xw

w

xv

v

e3e2e1

w

xt

t

xv

v

e3e2e1

w := v

w := v

e3e2e1

xt

t

w := v

v := v.a

t := nil

v := v.a

v := v.a

t := w

t := w

w.a := t

w.a := t

t := w

w.a := t

t := w

xw

xw

w

xv

v

e3e2e1

xt

t

w

xv

v

e3e2e1

xt

t

xt

t

xw

w

xv

v

e3e2

xt

t

xw

w

xv

v

e3e2e1

e1

xt

t

xw

w

xv

v

e1

xt

t

xw

w

xv

v

e3e2

xw

w

xt

t

xv

v

e3e2e1

xt

t

xw

w

xv

v

e3e2e1

xt

t

xw

w

xv

v

e3e2e1

xt

t

xw

w

xv

v

e3e2e1

Figure 5.11: Execution of the program in Example 5.5.1

5.6 Operational semantics 155

5.6.1 Preliminary terminology, assumptions and results

As discussed in Section 5.5.2, program variables can be modelled by a set of
special entities that are alive in every state. Therefore, given a program p ≡
decl v1, . . . , vn : (s1‖ · · · ‖sk) declaring the set of program variables DeclPVar =
{v1, . . . , vn}, from now let DeclLVar = {xv1 , . . . , xvn} and PV = {ev1 , . . . , evn}.
Since p is globally given, also DeclLVar and PV will be globally given. The
introduction of PV entails some constraints on some definitions already given.
In particular, we give the following:

Definition 5.6.1 (well-formed configuration). A configuration (E, µ, C)
with PV ⊆ E is PV -well-formed if

cod(µ) ∩ PV = ∅ (5.9)

C � PV = 1PV . (5.10)

Entities representing program variables cannot be referred to, and are con-
crete. In the rest of this section we consider only well-formed configurations.

Assumptions. For two well-formed configurations γ1 and γ2 we consider
throughout Section 5.6 only morphisms as well as reallocations that satisfy the
following conditions:

γ1�−
h−→γ2 ⇒ h � PV = idPV (5.11)

γ1 =
λ
� γ2 ⇒ ∀e ∈ PV : λ(e, e) = 1 (5.12)

Conditions (5.11) and (5.12) force the correspondence of the program variables
in configurations related by morphisms or reallocations. These constraints seem
to be rather natural because of the very special purpose assigned to PV (i.e.,
modelling p program variables). In fact, it is convenient — for example, from
state to state of the computation — to have every program variable re-mapped
on itself. Finally, we can see that (5.12) not only forces reallocations to map
ev ∈ PV onto itself, but in combination with (5.10), ensures also that ev is the
only entity that can be reallocated to itself.

Preliminary notation. Let µ∗ denote the reflexive and transitive closure of
the relation {(e, µ(e)) | e, µ(e) ∈ Ent} induced by the function µ. For configu-
ration γ, and e ∈ Eγ , µ∗

γ(e) is the set of entities in the remainder of the chain
starting with e. Note that e ∈ µ∗

γ(e). Moreover, let

〈γ〉PV = (µ∗
γ(PV), µγ � µ

∗
γ(PV), Cγ � µ

∗
γ(PV))

be the configuration obtained from γ after garbage collection, i.e., having as
set of entities those reachable via µγ by some program variable in PV . γ is
called PV -reachable if E〈γ〉P V

= Eγ .
A special class of morphisms that will turn out to be useful later on are

characterised by the following:

156 Chapter 5 – Dynamic References

Definition 5.6.2.

• A morphism h : γ�−→γ ′ is contractive, denoted h ↓, if |h−1(e)| > 1 for
some e ∈ Eγ′ ;

• the shrink factor of a morphism h : γ�−→γ ′, is max {|h−1(e)| | e ∈ Eγ′}.

We write h↓C if the shrink factor of h is at most C. Non-contractive mor-
phisms have shrink factor 1. A contractive morphism abstracts a chain of enti-
ties into a multiple or an unbounded entity. Note that contractive morphisms
correspond to non-injective morphisms. We introduce the term “contractive”
because it closely resembles the idea that the morphism collapses several en-
tities into one, thus providing a more compact view of the configuration. A
straightforward fact is given by the following observation.

Proposition 5.6.3. Let h : γ�−→γ ′. If h is non-contractive then h is an
isomorphism.

Proof. It is straightforward to see that h is bijective. In fact, every morphism
is surjective by definition and h is also injective because it is not contractive.
Then, let h′ : γ′�−→γ such that h′(e) = h−1(e). h′ is well-defined since h is
bijective and it can be proved to be a morphism. Moreover, by construction
we have h′ ◦ h = idγ . Thus, by definition h is an isomorphism.

Definition 5.6.4. For a configuration (E, µ, C) and entities e, e′ ∈ E, if there
exists n ∈ N such that e′ = µn(e), the distance d(e, e′) = n, otherwise d(e, e′) =
⊥.

Definition 5.6.5. (L-safety) Let L > 0. A configuration (E, µ, C) is L-safe if

∀e ∈ PV : (∀e′ : d(e, e′) 6 L⇒ C(e′) = 1).

If a configuration is not L-safe it is called L-unsafe.

Example 5.6.6. The configuration depicted in Figure 5.12 is 2-safe, since
every entity ev1 , · · · , ev6 (representing a program variable) has a distance of at
least two from the unbounded entity e. The configuration is not 3-safe, since
d(ev6 , e) = 3.

The following result says that isomorphic configurations have the same safe-
ness.

Proposition 5.6.7. For all L > 0: γ1
∼= γ2 ⇒ (γ1 L-safe ⇔ γ2 L-safe).

Proof. Straightforward since isomorphic configurations are equal up to renam-
ing of entities.

Again we should pay some attention on the distinction between a HABA
state q and its associated configuration γ when it comes to terminology and
notation. In particular, the concepts just introduced for configurations, like

5.6 Operational semantics 157

ev3

ev2
ev1

e

ev4

ev6

ev5

Figure 5.12: A 2-safe configuration.

well-formedness, PV -reachability and L-safeness are transferred to states in
a straightforward manner, saying that a state q is respectively well-formed,
PV -reachable, and L-safe if its configuration γq is so.

In the following, for the concrete and symbolic semantics we will guarantee
that every state q is L-safe, and PV -reachable as well as well-formed.

5.6.2 Concrete semantics

A concrete semantics of Ln is given in terms of ABA. Let Par denotes the set
of compound statements, i.e., r(∈ Par) ::= s | r ‖ s.

Definition 5.6.8 (Concrete automaton Ap). The concrete semantics of
p = decl v1, . . . , vn : (s1 ‖ · · · ‖ sk) is the ABA Ap = 〈Xp, Q,E,→, I,F〉 where

• Xp = {xv1 , . . . , xvn};

• Q ⊆ (Par×Conf)∪{error}, where for state (r, γ) ∈ Q, r is the compound
statement to be executed, and γ is a PV -well-formed and PV -reachable
configuration.

• E(r, γ) = γ and E(error) = (∅,∅,∅);

• −→ ⊆ Q×Q is the smallest relation satisfying the rules in Table 5.3;

• dom(I) = {(s1 ‖· · ·‖ sk,PV ,∅,1PV)} and I(s1 ‖ · · · ‖ sk,PV ,∅,1PV) =
(∅, ϑ) where ϑ(xvi) = evi (1 6 i 6 n);

• let

F̂i = {(s′1 ‖ · · · ‖ s
′
k, γ) ∈ Q | s

′
i = skip ∨ s′i = while b do s od; s′′}

F̃i = {(s′1 ‖ · · · ‖ s
′
k, γ) ∈ Q | s

′
i = skip ∨ s′i = s; while b do s od; s′′}

then F = {F̂i ∪ {error} | 0 < i 6 k} ∪ {F̃i ∪ {error} | 0 < i 6 k}.

158 Chapter 5 – Dynamic References

A few remarks are in order. Every configuration γ in a state has 1γ because
Ap is an ABA (cf. Definition 5.3.10). There is a special error state resulting
from an attempt to evaluate an expression α.a, where α does not denote any
entity (illegal statement). The set of logical variables only contains those that
are used to encode the program variables declared in the program p. Ap has a
single initial state s1 ‖ · · · ‖ sk. The entities that are initially alive are those
used for modelling program variables. ϑ gives the standard interpretation for
variables in Xp according to our initial assumptions (cf. Section 5.5.2). The
set of accept states for the i-th sequential component consists of all states in
which the component has either terminated (si = skip) or is processing a loop
(which could be infinite) or is the error state.

Using the interpretation of navigation expressions defined in Section 5.2.1
and ϑ given by the initial state, we define the semantics of the boolean expres-
sions used in conditional statements.

Definition 5.6.9. The semantics of boolean expressions is the function V :
(Bexp×Conf)→ B given by (by definition (⊥ = ⊥) = tt)

V(α1 = α2, γ) =

{
tt if [[α1]]µγ ,ϑ

= [[α2]]µγ ,ϑ

ff otherwise

V(b1 ∨ b2, γ) = V(b1, γ) ∨ V(b2, γ)

V(¬b, γ) = ¬V(b, γ).

Manipulating configurations. For the definition of the concrete and sym-
bolic operational rules we rely on three operations that are meant to perform
an update on the configuration according to the statement (new, del, or as-
signment) that is executed by the rule.

The first operation, add (γ, α) adds to the configuration γ a fresh entity, and
assigns the reference to the entity denoted by the expression α. We assume
w.l.o.g. that the set Ent is totally ordered; this is convenient for selecting the
fresh entity in a deterministic way, in fact we can take the first one not used
in γ, i.e., min(Ent\Eγ). The resulting configuration is composed only by PV -
reachable entities, i.e., garbage collection is applied at this stage. Formally, the
function add : Conf×Π→ Conf is given by:

add (γ, α) = 〈Eγ ∪ {e}, µγ{e/[[α]]µγ ,ϑ
}, Cγ{1/e}〉PV (5.13)

where e = min(Ent\Eγ).
The operation cancel(γ, α) deletes from the configuration γ the entity de-

noted by α. cancel : Conf×Π→ Conf is given by

cancel(γ, α) = 〈Eγ\{[[α]]µγ ,ϑ
}, µγ ◦ ψ, Cγ � (Eγ\{[[α]]µγ ,ϑ

})〉PV (5.14)

where ψ : Eγ → E⊥
γ is defined as

ψ(e) =

{
⊥ if e ∈ µ−1

γ ([[α]]µγ ,ϑ
) ∪ [[α]]µγ ,ϑ

e otherwise

5.6 Operational semantics 159

In the resulting configuration, every pointer to [[α]]µγ ,ϑ
are set to ⊥ by ψ and

the domain of the cardinality function is restricted to the remaining set of
entities.

Finally, the last operation modify(γ, α1, α2) performs an update on γ’s
pointer structure so that the entity denoted by α1 will point to [[α2]]µγ ,ϑ

. This
will be used in the assignment rules. As usual, the resulting configuration con-
tains only reachable entities. The function modify : Conf × Π → Conf is
given by

modify(γ, α1, α2) = 〈Eγ , µγ{[[α2]]µγ ,ϑ
/[[α1]]µγ ,ϑ

}, Cγ〉PV (5.15)

Concrete operational rules. Transitions for the basic statements follows
the general pattern:

r, γ −→ skip, γ′

The configuration of the target state of a transition has a transformation of
the configuration of the source state, and has only reachable entities. The
transformation is carried out by one of the operations (5.13), (5.14), and (5.15)
defined above. If garbage is produced by a transition it is immediately collected
and removed by the application of the operation itself. Furthermore, recall that
a program variable v is syntactic sugar for xv.a. Therefore every navigation
expression occurring in a statement is of the form α.a (or nil). Finally, we write
[[α]] as a shorthand for [[α]]µ,ϑ. We briefly comment on the rules contained in
Table 5.3.

• Assignment. Trying to perform an assignment α1.a := α2 results —
by the application of rule (ASGNerror-c) — in a run-time error if α1 is a
null pointer. Otherwise, rule (ASGN-c) applies5. By the application of
modify(γ, α1, α2), the execution of the assignment corresponds to updat-
ing the outgoing reference µ([[α1]]) to the entity denoted by α2 (e.g. see a
transition resulting from an assignment in Figure 5.11). After the execu-
tion, the assignment statement is replaced by skip that is either consumed
in the context of a sequential composition rule or is blocked. This general
pattern is also followed by rules (NEW-c) and (DEL-c).

• Creation. Unless α is an illegal expression — in which case (NEWerror-c)
applies producing a run-time error — the reference of the first (fresh)
entity e available from Ent according to the total order is assigned (by
add (γ, α)) to the outgoing reference of the entity denoted by α, cf. (5.13).

• Deletion. By (DEL-c), the entity denoted by α.a is deallocated and ev-
ery reference to this entity is cancelled according to the definition of

5Note that if α2 is of the form α3.a where [[α3]]µγ ,ϑ
= ⊥ the assignment α1.a := α2 is

treated by the current semantics as α1.a := nil . Another possible choice in the design of
the semantics could be to treat such statement as “illegal”, and therefore, by the operational
rule give a run-time error by making a transition to the error state. The conversion of the
current approach to the other is straightforward.

160 Chapter 5 – Dynamic References

(NEWerror-c)
[[α]] = ⊥

new(α.a), γ −→ error

(NEW-c)
[[α]] 6= ⊥

new(α.a), γ −→ skip, add (γ, α)

(DELerror-c)
[[α]] = ⊥

del(α.a), γ −→ error

(DEL-c)
[[α]] 6= ⊥

del(α.a), γ −→ skip, cancel (γ, α.a)

(ASGNerror-c)
[[α1]] = ⊥

α1.a := α2, γ −→ error

(ASGN-c)
[[α1]] 6= ⊥

α1.a := α2, γ −→ skip,modify(γ, α1, α2)

(IF1-c)
V(b, γ)

if b then s1 else s2 fi, γ −→ s1, γ

(IF2-c)
¬V(b, γ)

if b then s1 else s2 fi, γ −→ s2, γ

(WHILE-c)
while b do s od, γ −→ if b then s; while b do s od else skip fi, γ

(SEQerror-c)
s1, γ −→ error

s1; s2, γ −→ error

(SEQ1-c)
s1, γ −→ s′1, γ

′ ∧ s′1 6= error

s1; s2, γ −→ s′1; s2, γ
′

(SEQ2-c) skip; s2, γ −→ s2, γ

(PARerror-c)
1 � j � k ∧ sj , γ −→ error

s1 ‖ · · · ‖ sj ‖ · · · ‖ sk, γ −→ error

(PAR1-c)
1 � j � k ∧ sj , γ −→ s′j , γ

′ ∧ s′j 6= error

s1 ‖ · · · ‖ sj ‖ · · · ‖ sk, γ −→ s1 ‖ · · · ‖ s′j ‖ · · · ‖ sk, γ′

(PAR2-c)
skip ‖ · · · ‖ skip, γ −→ skip ‖ · · · ‖ skip, γ

(ERROR)
error −→ error

Table 5.3: Operational rules for the concrete semantics of Ln.

5.6 Operational semantics 161

cancel(γ, α.a). Rule (DELerror-c) only applies if α dereferences a null
pointer.

• Conditional and loop. Rules (IF1-c)/(IF2-c)/(WHILE-c) are straight-
forward6.

• Sequential composition. By rules (SEQ1-c)/(SEQ2-c) when the first
statement is reduced to a skip statement, it is consumed, if it is reduced
to error, s1; s2 reduces to error.

• Parallel composition. By (PAR1-c), if one of the components of the
compound statement performs a step, the whole compound statement
can do so, unless an error is produced in which case the whole compound
statement reduces to error. As for the language defined in Chapter 4,
by (PAR2-c), a self-loop in an accept state with a terminated compound
statement ensures that, in a run, it is visited infinitely many times.

• Error. A self-loop in an error state produces accepting runs that have
terminated in an abnormal way because of run-time errors due to the
dereferencing of null pointers.

Proposition 5.6.10. For any L > 0, if q ∈ QAp then q is L-safe, PV -reachable
and well-formed.

Proof. Straightforward. In fact, any q ∈ QAp has the unitary cardinality func-
tion therefore it is safe by definition. Furthermore, states are PV -reachable by
definition. Finally, q is well-formed; in fact, (5.10) is trivially satisfied and con-
dition (5.9) it satisfied by the initial state. Moreover, modifications of pointers
in the rules of Table 5.3 are performed only by (NEW-c) and (ASGN-c). But
both rules assign entities which do not belong to PV by definition. In partic-
ular, for (ASGN-c) note that [[α2.a]] cannot be in PV because of the syntactic
structure of α2.a.

5.6.3 Canonical form for HABA states

For the definition of the symbolic semantics it is convenient to define the con-
cept of normal form which provides a standard representation (unique up to
isomorphism) for a set of safe states that may be related by morphisms. To
this end we first define a notion that it somehow complementary to safeness.

Definition 5.6.11 (L-compactness). A configuration (E, µ, C) is L-compact
if

∀e ∈ E : (indegree(e) > 1 ∨ ∃e′ ∈ PV : d(e′, e) 6 L+ 1).

6As already observed for the assignment rule, note that, b may contain expressions like
α1.a = α2.a where either [[α1]]µγ ,ϑ

= ⊥ or [[α2]]µγ ,ϑ
= ⊥. The function V(b, γ) return a

boolean value also in this case. As above, such expression are not treated as “illegal” but as
nil . Again, it would not be problematic to adapt this semantics to the opposite approach.

162 Chapter 5 – Dynamic References

e1ev e2 e4 e5 e6e3

q′

qev e1 e2

Figure 5.13: More than one morphism can relate a L-compact state to another.

As usual we extend this notion to states in the standard way: a state q is
L-compact if its configuration γq is so.

Thus, a compact state is a state that can have pure chains only if they are
distant at most L + 1 entities from a program variable. Given two states q
and q′ one of which is L-compact, in general there might exist more than one
morphism relating them. This is normally the case if the state is not L-safe.

Example 5.6.12. Let L = 2 and the global constant M = 1. Let (cf. Fig-
ure 5.13):

q = ({ev, e1, e2}, {(ev, e1), (e1, e2)}, {(ev, 1), (e1, ∗), (e2, ∗)})

q′ = ({ev} ∪ {ei | 1 6 i 6 6},

{(ev, e1)} ∪ {(ei, ei+1) | 1 6 i 6 5},

{(ev, 1)} ∪ {(ei, 1) | 1 6 i 6 6}).

State q is L-compact (but not L-safe), however, there exists more than one
morphism between q′ and q. In fact let h1 : q′�−→q and h2 : q′�−→q defined
as:

h1(ei) =

{
e1 if 1 6 i 6 2
e2 otherwise

h2(ei) =

{
e1 if 1 6 i < 4
e2 otherwise.

Hence, h1 and h2 distribute entities of q′ onto entities of q in different ways.
Figure 5.13 gives a pictorial representation of this situation. h1 is represented
by dashed lines whereas h2 by dotted ones.

We now define the notion of canonical form.

Definition 5.6.13 (canonical form). A configuration γ is L-canonical (or
in L-normal form) if

• γ is L-safe;

• γ is L-compact.

5.6 Operational semantics 163

A configuration in canonical form enjoys several properties.

Proposition 5.6.14. If a configuration γ is L-canonical then:

a) γ is PV -reachable;

b) for every configuration γ ′, if there exists a morphism h : γ�−→γ ′ then
either γ ∼= γ′ or γ′ is L-unsafe.

Proof. See Appendix B.2.

The previous proposition shows that if a configuration is in canonical form
then it is in the most compact (safe) form up to isomorphism. In fact, if
compacted further, it would be unsafe.

Proposition 5.6.15. Let γ1 and γ2 be a PV -reachable and a L-canonical
configurations, respectively. If h1 : γ1�−→γ2 and h2 : γ1�−→γ2 then h1 = h2.

Proof. See Appendix B.2.

Theorem 5.6.16 (Existence of the canonical form). For every L-safe and
PV -reachable configuration γ there exists an L-canonical configuration γ ′ and
a unique morphism h : γ�−→γ ′.

Proof. See Appendix B.2.

Corollary 5.6.17. The canonical form of L-safe configuration γ is unique (up
to isomorphism).

We call γ′ (of the previous theorem) the canonical form of γ and indicate
it by cf(γ). We write hcf(γ) for the unique morphism h relating γ and cf(γ).

Safe expansions. Theorem 5.6.16 ensures the existence of a unique canonical
form for safe configuration. However, in the definition of the assignment rule
we need to deal with unsafe configurations. We have also seen that an unsafe
configuration can be related to a safe one by more than one morphism. The
following notion defines a finite set of pairs (γ ′, h) where, the first component
γ′ is an L-safe configuration representing the same topological structure of
a possibly unsafe configuration γ; the second component h is the morphism
relating γ′ and γ.

Definition 5.6.18. The set of safe expansions of a configuration γ is

SExp(γ) = {(γ′, h) | γ′ is L-safe and h↓L+1: γ′�−→γ}.

In SExp(γ) all configurations that are included are related to γ by a contractive
morphism (cf. Definition 5.6.2) with shrink factor at most L+ 1. This bound
ensures that SExp(γ) is finite (up to isomorphism). Moreover, we will see that
this is enough to include in SExp(γ) all the necessary configurations needed for
the definition of the assignment rule in Section 5.6.4.

164 Chapter 5 – Dynamic References

∗

q

e0ev

SExp(γq)

srk factor = 3

C(e0) = 3

srk factor = 4

C(e0) = 4

srk factor = 5

C(e0) = 5

srk factor = 5

C(e0) = 6

srk factor = 5

C(e0) > 6∗

ev

ev

ev

e3e2

e4e1 e3e2ev

e1 e3e2

e1

2

ev e5e4e1 e3e2

e5e4e1 e3e2

e5e4

Figure 5.14: Example of safe expansions for an unsafe state (case L = 4,
M = 2).

Example 5.6.19. Assume the global constant M = 2. Then configuration
γq depicted in Figure 5.14 (left) is not 4-safe. The SExp(qγ) contains the
configurations reported in the right part of figure enclosed in the dashed box.
For each of them the shrink factor is indicated together with the corresponding
cardinality of e0 that the single (configuration of the) state represents.

Combining reallocations and morphisms. Combining reallocations with
morphisms in general does not result neither in a morphism nor in a reallo-
cation. However, in some special cases the combination of an id reallocation
followed by morphisms defines a reallocation. For the definition of the symbolic
operational rules we are interested in some of these special cases.

The following proposition proves that it is possible to complete the diagram
reported in Figure 5.15 by a reallocation λ.

Proposition 5.6.20. Let γ and γ ′′′ be two L-canonical states. If γ =
id
=�

γ′ −h1−←−≺ γ′′�−h2−−→γ′′′ such that

(a) ∀e ∈ Eγ′′′ : id−1(h1 ◦ h
−1
2 (e)) ⊆ E⊥

γ is a chain and

(b) Cγ′′′(e) = ∗ ⇒ ⊥ /∈ id−1(h1 ◦ h
−1
2 (e)).

5.6 Operational semantics 165

γ′′

id h2

γ

γ′

λ

h1

γ′′′

Figure 5.15: Diagram of Proposition 5.6.20

Then γ =
λ
� γ′′′ where:

λ = {(e1, e2, Cγ′′(h−1
1 (e1) ∩ h

−1
2 (e2))) | e1 ∈ Eγ} ∪

{(e,⊥, Cγ(e)) | e ∈ Eγ\Eγ′} ∪

{(⊥, e, Cγ′′′(e)) | e ∈ Eγ′′′ ∧ h1 ◦ h
−1
2 (e) ∩ Eγ = ∅}.

Proof. See Appendix B.2.

We write h2 ◦ h
−1
1 ◦ (γ =

id
=� γ′) to indicate the reallocation λ defined in

the previous proposition. In some cases we will use a simplified version of

h2 ◦ h
−1
1 ◦ (γ =

id
=� γ′) that corresponds to the special case γ =

id
=� γ′�−h−→γ′′.

In this case we define:

h ◦ (γ =
id
=� γ′) = {(e, h(e), id(e, e)) | e ∈ Eγ ∩Eγ′} ∪ (5.16)

{(e,⊥, Cγ(e)) | e ∈ Eγ\Eγ′} ∪

{(⊥, h(e), Cγ′′(e)) | e ∈ Eγ′\Eγ}.

As h2 ◦ h
−1
1 ◦ (γ =

id
=� γ′) also h ◦ (γ =

id
=� γ′) defines a reallocation provided

that the same hypothesis of Proposition 5.6.20 are valid. This is stated in the
next remark.

Corollary 5.6.21. Let γ, γ′ be two L-canonical configurations. If γ =
id
=�

γ′�−h−→γ′′ such that

(a) ∀e ∈ Eγ′′ : id−1(h−1(e)) ⊆ E⊥
γ is a chain and

(b) Cγ′′(e) = ∗ ⇒ ⊥ /∈ id−1(h−1(e)).

then γ =
λ
� γ′′ where h ◦ (γ =

id
=� γ′).

Proof. Straightforward. In fact, by Proposition 5.6.20 we have γ =
λ
� γ′′ be-

cause γ =
id
=� γ′ −id−←−≺ γ′�−h−→γ′′ where λ, defined in the proposition, is precisely

h ◦ (γ =
id
=� γ′).

The composition of id reallocations with morphisms is interesting because
the operation add, cancel, modify — that we will use for the definition of the
symbolic rules — transform a configuration γ into a configuration γ ′ which is
related to the former by an id reallocation.

166 Chapter 5 – Dynamic References

Lemma 5.6.22. Let γ be a configuration, and α, α′ be navigation expressions.
Then:

1. γ =
id
=� add (γ, α)

2. γ =
id
=� cancel(γ, α)

3. γ =
id
=� modify(γ, α, α′).

Proof. Straightforward. In fact, for the three operation it is easy to define the
corresponding identity reallocations.

1. For e ∈ Eγ , e′ ∈ Eadd(γ,α), let λ : γ =� Eadd(γ,α) defined as:

λ(e, e′) =

{
Cγ(e) if e = e′

0 otherwise.

λ(⊥, e′) =

{
1 if e′ = min(Ent\Eγ)
0 otherwise.

λ(e,⊥) =

{
Cγ(e) if Eγ\Eadd(γ,α)

0 otherwise.

It is possible to verify that λ defines a reallocation according to Defini-
tion 5.3.12 and moreover it satisfies the Definition 5.4.9, therefore it is an
identity reallocation.

2. Similar to the previous case. For e ∈ Eγ , e′ ∈ Ecancel(γ,α), let λ′ : γ =�
Ecancel(γ,α) defined as:

λ′(e, e′) =

{
Cγ(e) if e = e′

0 otherwise.

λ′(e,⊥) =

{
Cγ(e) if Eγ\Ecancel(γ,α)

0 otherwise.

Like the add case, it can be verified that λ′ is an identity reallocation.

3. Similar to the cancel case. For e ∈ Eγ , e′ ∈ Emodify(γ,α,α′), let λ′′ : γ =�
Emodify(γ,α,α′) defined as:

λ′′(e, e′) =

{
Cγ(e) if e = e′

0 otherwise.

λ′′(e,⊥) =

{
Cγ(e) if Eγ\Emodify(γ,α,α′)

0 otherwise.

Again, like the add case, it can be verified that λ′′ is an identity reallo-
cation.

5.6 Operational semantics 167

5.6.4 Symbolic semantics

The concrete semantics of Ln defined in the previous section is rather intuitive,
but results in an infinite state space. For example, this can happen, in our case,
because during the computation the mechanism of entity creation is invoked
infinitely often without equally many deletions. The infinite-state explosion
should not be a surprise since it is a typical phenomenon of concrete semantics
of many formalisms meant to model complex systems. Recall, for instance,
that the language L studied in Section 4.4 has an infinite state space even for
very simple programs. In this section — in a similar way as in Section 4.4.3 —
we define a symbolic semantics of Ln in terms of HABA with references. We
will exploit the notion of canonical form for states introduced in Section 5.6.3
and we will observe that this helps to achieve a finite-state semantics for every
program of the language.

Assumptions. In the definition of the symbolic semantics, we assume to
know the longest navigation expression occurring in the program p. This num-
ber, denoted by Lp, can be determined statically by a syntactic analysis over
p. In any state of the program, Lp provides us with an upper bound (in terms
of distance from a program variable) to the most distant entity accessed by a
statement of p. For example, if x.a4 is the longest occurring reference expres-
sion in p then Lp = 5. Thus we define:

Lp = max {n | v.an occurs in p}+ 1. (5.17)

Informal idea of the symbolic model. In the symbolic semantics, we
exploit unbounded entities in order to keep the model finite7. The price to
pay for the resulting finitary treatment of the semantics is an increase in the
complexity of the machinery needed for the definition of the transition system.
In particular, the difficulties inherent to the employment of unbounded entities
are two:

• It may be unclear which entities are involved in the execution of a state-
ment.

• it may be unclear which is the state resulting after the execution of a
statement.

The direct consequence is the unavoidable introduction of non-determinism in
the model. We would like to exploit as much information as possible in order
to minimise the amount of this nondeterminism. For this reason, the symbolic
semantics applies the following strategy:

whenever an unbounded entity appears in a state we make sure that
this is preceded by a chain of length at least Lp of concrete entities.

7Here unbounded entities generalise the concept of black-hole used in Chapter 4.

168 Chapter 5 – Dynamic References

w

v3

v2

v1

v5

v6

v4

q′q

w := w.a3

v3

v2

v1

v5

v6

v4

w

Figure 5.16: From the 3-safe state q the assignment w := w.a3 produces the
3-unsafe state q′.

In other words, any state of the symbolic semantics is enforced to be Lp-safe
(cf. Definition 5.6.5). This implies, by assumption on Lp (see (5.17)), that
in every state we can precisely determine the concrete entity denoted by any
navigation expression occurring in new or del statements. The major benefit
is that for these statements the operational rules are deterministic and easy to
define. The only source of nondeterminism in the symbolic semantics may be
the assignment statement. In fact, although the entities denoted by both the
expressions on the left-hand side and on the right-hand side of the assignment
are uniquely identified (by Lp-safeness assumption), the effect of an assignment
may result in an unsafe state. In general, this happens when variables change
their reference to some entities that are closer to an unbounded entity. For
example, the state q depicted in Figure 5.16 is 3-safe. However, the assignment
w := w.a.a.a produces the 3-unsafe state q′. Hence, since we admit only safe
states, it is not possible to take as a result of an assignment q′ that merely
results from the manipulation of pointers dictated by the assignment. We need
to consider “safe versions” of q′, i.e., more concrete states that represent the
same pointer structure. In terms of Definition 5.6.18, this means to consider
states in SExp(q′). In general there can be more than one possibility and
therefore a nondeterministic step is unavoidable.

Definition 5.6.23 (Symbolic automaton Hp). The symbolic semantics of
p = decl v1, . . . , vn : (s1 ‖ · · · ‖ sk) is the HABA Hp = 〈Xp, Q,E,→, I,F〉
where

• Q ⊆ (Par × Conf) ∪ {error}, i.e., a state (r, γ) consists of a compound
statement r, and a PV -well-formed and Lp-canonical configuration γ.

• −→⊆ Q× (Ent × Ent ⇀ M∗)×Q, is the smallest relation defined by the
rules in Table 5.6.4; see Section 5.6.5 for concepts and notation.

and Xp, E, I and F are defined in the same way as Definition 5.6.8.

5.6 Operational semantics 169

The definition of Hp resembles the one given for Ap in many aspects, in
particular concerning the initial state and the accept state, and the reader is
referred to Definition 5.6.8 for comments on these components.

5.6.5 Symbolic operational rules

The rules of the symbolic operational semantics are heavily based on the central
notion of canonical form defined in Section 5.6.3. They follow the general
pattern:

r, γ −→λ skip, cf(γ′)

The idea is that the target state is the canonical form of a certain manipulation
of the source state performed — as for the concrete semantics — by one of the
operation (5.13), (5.14) or (5.15). The canonical form must be enforced since
manipulating pointers in the source state (in particular, during an assignment)
may indeed result in a target state that is not Lp-canonical (see above). Ob-
serve that since the target state is PV -reachable8, garbage collection is applied
at every transition. Hence, apart from the canonical form, any symbolic rule
resembles the corresponding concrete rule. The only exception is (ASGN-s)
(that we comment below). There exists in general a relation between the real-
location λ and the morphism hcf(γ

′), which we abbreviate with hcf , as can be
observed in the rules.

In the symbolic operational rules the evaluation of a navigation expression α
is done by the definition of semantics [[α]] given in Section 5.2.1 and already used
for concrete semantics. This is possible becauseHp has only Lp-canonical states
(that are Lp-safe by definition) and therefore, the scope of any expression α is
within the part of the configuration containing only concrete entities. Hence,
for every state in a configuration γq of a state q ∈ QHp , the expression [[α]]µγq ,ϑ

is well-defined.

• Creation. Performing new(α.a) results in the canonical form of the
configuration obtained by add(γ, α.). Corollary 5.6.21 and Lemma 5.6.22
ensure that this is a reallocation. Performing a new(α.a) statement with
α undefined results in a run-time error. As in the concrete semantics,
this is modelled by the special state error (cf. (NEWerror-s)rule).

• Deletion. The rule (DEL-s) deletes the entity denoted by α.a according
to cancel(γ, α.a).

• Assignment As usual, if a null pointer is dereferenced, a run-time error
is produced, cf. (ASGNerror-s) rule9.

8Because of the application of the operations that manipulate the configurations.
9Concerning the possibility to detect a run-time error in case α2 is an illegal expression,

the same observation done for the concrete semantics holds also for the symbolic one (cf.
foot note page 159).

170 Chapter 5 – Dynamic References

(NEWerror-s)
[[α]] = ⊥

new(α.a), γ −→ � error

(NEW-s)
[[α]] 6= ⊥

new(α.a), γ −→λ skip, cf(add(γ, α))
λ=hcf◦(γ =

id
=� add (γ, α))

(DELerror-s)
[[α]] = ⊥

del(α.a), γ −→ � error

(DEL-s)
[[α]] 6= ⊥

del(α.a), γ −→λ skip, cf(cancel(γ, α.a))

where λ = hcf ◦ (γ =
id
=� cancel (γ, α.a))

(ASGNerror-s)
[[α1]] = ⊥

α1.a := α2, γ −→ � error

(ASGN-s)
[[α1]] 6= ⊥

α1.a := α2, γ −→λ skip, cf(γ′′)

where � (γ′′, h) ∈ SExp(modify(γ, α1, α2))

λ = hcf ◦ h
−1 ◦ (γ =

id
=� modify(γ, α1, α2))

(IF1-s)
V(b, γ)

if b then s1 else s2 fi, γ −→id s1, γ

(IF2-s)
¬V(b, γ)

if b then s1 else s2 fi, γ −→id s2, γ

(WHILE-s)
while b do s od, γ −→id if b then s; while b do s od else skip fi, γ

(ERROR)
error −→ � error

(SEQerror-s)
s1, γ −→ error

s1; s2, γ −→ � error

(SEQ1-s)
s1, γ −→λ s

′
1, γ

′ ∧ s′1 6= error

s1; s2, γ −→λ s
′
1; s2, γ

′

(SEQ2-s) skip; s2, γ −→id s2, γ

(PARerror-s)
1 � j � k ∧ sj , γ −→ error

s1 ‖ · · · ‖ sj ‖ · · · ‖ sk, γ −→ � error

(PAR1-s)
1 � j � k ∧ sj , γ −→λ s

′
j , γ

′ ∧ s′j 6= error

s1 ‖ · · · ‖ sj ‖ · · · ‖ sk, γ −→λ s1 ‖ · · · ‖ s′j ‖ · · · ‖ sk, γ′

(PAR2-s)
skip ‖ · · · ‖ skip, γ −→id skip ‖ · · · ‖ skip, γ

Table 5.4: Operational rules for the symbolic semantics of Ln.

5.6 Operational semantics 171

γ′′

id hcf

cf(γ′′)γ
λ

h
modify(γ,α1, α2)

Figure 5.17: Correspondence between the source and the target state in the
assignment rule.

Otherwise, (ASGN-s) applies. Informally speaking, it employs the follow-
ing strategy:

1. First of all, the manipulation of pointers dictated by the assignment
takes place according to modify(γ, α1, α2).

2. If the configuration modify (γ, α1, α2) is unsafe, we consider its safe
expansion.

3. Every state having as a configuration the canonical form of a γ ′′ ∈
SExp(modify (γ, α1, α2)) is a target state of the assignment rule.

Safety can be lost only if in the remainder of the expression considered
by the assignment there exists some unbounded entity. For example,
consider the case where a variable w is assigned with some entity down
in the same list pointed to by w (cf. Figure 5.16).

If in the remainder of the expression we want to assign there are no
unbounded (or multiple) entities, readjusting the pointers performed by
modify(γ, α1, α2) according to the assignment and taking the canonical
form suffices, i.e., step 2 is not necessary.

Rule (ASGN-s) is non-deterministic if the set SExp(modify (γ, α1, α2))
contains more than one configuration and they do not have the same
canonical form. The existence of the canonical form cf(γ ′′) is guaran-
teed by Theorem 5.6.16. The definition of the reallocation λ can be
understood by Figure 5.17. Configurations γ and modify(γ, α1, α2) are
related by an identity reallocation as stated by Lemma 5.6.22. λ re-
allocates entities e ∈ Eγ , e

′ ∈ Ecf(γ′′) related by the morphisms h in
SExp(modify(γ, α1, α2)) and hcf .

Rules for conditional, while loop, sequential composition, parallel composition,
and run-time error are similar to those in Table 5.3 and are listed here for
completeness. For an explanation, we refer the reader to Section 5.6.2.

Example 5.6.24. Let L = 3 and M = 2. The actual transitions resulting from
the assignment w := w.a3 considered in Figure 5.16 are shown in Figure 5.18.
γq1 , γq2 , γq3 are the canonical form of the states in SExp(γq′).

In Figure 5.19, we focus on the steps corresponding to the diagram in Fig-
ure 5.17 taken to obtain the transition q −→λ q1. Only the mapping of the

172 Chapter 5 – Dynamic References

q2

v4

v6

v5

v1

v2

v3

w

2

w := w.a3

q

w := w.a3

q1

v4

v6

v5

v1

v2

v3

w

w := w.a3

w

v4

v6

v5

v1

v2

v3

q3

v4

v6

v5

v1

v2

v3

w

∗

Figure 5.18: Non-deterministic step given by an unsafe assignment.

unbounded entity is drawn. The mappings for the other entities are identities.
State q′′ is obtained by the morphism h ↓4. The canonical form then reduces
the chain of four elements in one with three elements.

The next lemma states a corollary of Proposition 5.6.20.

Lemma 5.6.25. λ defined in rule (ASGN-s) is a reallocation.

Proof. See Appendix B.2.

Proposition 5.6.26. If q ∈ QHp then q is L-safe, PV -reachable and well-
formed.

Proof. Straightforward by the definition of QHp .

5.6.6 Relating the concrete and symbolic semantics

In this section, we study the relation between the two semantics we have defined
for Ln. For the language L defined in Chapter 4 we found that the concrete
and the symbolic semantics are actually equivalent. For the special case of Ln,
the correspondence between Ap and Hp is stated by the following:

5.6 Operational semantics 173

v5

v1

v2

v3

w

q′′

v4

v6

v5

v1

v2

w

2

v3

q1

v4

v6

v5

v1

v2

v3

w

∗

id hcf

v6

q

w

v4

v6

v5

v1

v2

v3 λ

q′

v4

h

Figure 5.19: Zoom of the diagram in Fig. 5.17 applied to the assignment of
Fig. 5.18.

Theorem 5.6.27. For all programs p : id (Ap) v Hp.

Proof. See Appendix B.2.

The symbolic automaton simulates the concrete one, therefore the theory
and results developed in Section 5.4 can be applied here to Ap and Hp. In par-
ticular concerning the verification of Na``TL properties of the program p whose
semantics is given by Ap and Hp. In fact, as a straightforward consequence of
the previous theorem we have:

Corollary 5.6.28. For every program p and every Na``TL-formula φ:

φ is Hp-valid ⇒ φ is Ap-valid.

Proof. Straightforward application of Theorem 5.6.27 and Propositions 5.4.7
and 5.4.11.

Finally, the next result gives another important step towards the develop-
ment of techniques for exhaustive state space verification for HABA.

Theorem 5.6.29. For all programs p, Hp is finite-state.

Proof. See Appendix B.2.

174 Chapter 5 – Dynamic References

On the refining of the model. The construction of the model Hp depends
on the canonical form that in turn is parametric to the number Lp. The
precision of the model may be increased by tuning opportunely Lp: in fact,
by increasing Lp, the corresponding canonical form of the states will be more
concrete. A second parameter that can be used to change the precision of the
model is M. The higher is C(Hp) the more concrete is the model. Hence, a tool
that extracts a model from p should be designed to provide the user with the
capability to input Lp and M .

5.7 Model checking Na``TL

In this section, we define an algorithm for model-checking Na``TL formulae
against a HABA with references. The algorithm is based on the one defined in
Section 4.5 that, in turn, extends the tableau-based method for LTL [77].

As we have done in Section 4.5, we will evaluate Na``TL-formulae on states
of a HABA by mapping the free variables of the formula to entities of the
state. Again, these mappings are used to resolve all basic propositions like:
the freshness predicate x new; the entity equation x.an = y.am; and the (new)
leads-to propositions x.an y.am. The same obstacles encountered for A``TL
need to be addressed here, together with new difficulties proper of Na``TL.
These can be summarised as follow.

• It is not always uniquely determined whether or not an entity is fresh
in a state. Arriving in the states from different transitions an entity can
be new or old depending whether or not it is in the codomain of the
reallocation attached to that transition.

As for A``TL, this obstacle is dealt with by the duplication of states
defined in Section 4.5.1.

• For variables (of the formula we want to model-check) that are mapped
onto unbounded entities, propositions like entity equation or leads-to can-
not be decided since it is not clear in which instances of the unbounded
entity the variables are interpreted.

To deal with this difficulty, we extend the notion of valuation used for
A``TL (cf. Definition 4.5.4). For Na``TL, we define a notion of distance
between the interpretation of the free variables of a formula. Since vari-
ables, say x and y, can be mapped onto the same unbounded entity e, the
distance needs to be sensible to the level of the “instances” of e where x
and y are precisely interpreted10.

• For the formula φ we want to model-check, the HABA can be too ab-
stract. In particular, the global constant M up-to which we have precise

10In this context, instances of e are synonym of the concrete entities that e abstractly
represents.

5.7 Model checking Na``TL 175

q

x

*

y

e

Figure 5.20: In q is the truth value of x.a5 = y ambiguous.

knowledge of the number of concrete entities an multiple entity represents
can be too small with respect to the navigation expressions occurring in
φ. When this is the case, it is not possible to decide equality propositions
and the leads-to predicate.

To overcome this problem typical of HABA with references and Na``TL,
we transform the model in an equivalent one where the global constantM
is raised up to a suitable upper bound (dependent from φ) that provides
correct information for the atomic propositions in φ. This transformation
process is called stretching.

5.7.1 Stretching HABA

In a HABA H an entity can have precise cardinality only up to the global
constant M . In the process of model checking a formula φ, the abstraction
imposed byM can result to be too strong. In fact, it is necessary to find suitable
assignments for φ’s variables in order to decide whether it cannot be satisfiable
in H. Thus there exists a dependency between the atomic propositions in φ
and the constant M . In case M is too small, and therefore the representation
of H is too abstract to support the definition of valuations (cf. Section 5.7.6),
H must be unfolded, or as we say, stretched. The stretching process increases
the precision of H states.

Example 5.7.1. Assume M = 2 and consider the state q depicted in Fig-
ure 5.20. Moreover, assume we want to decide if the formula φ ≡ x.a5 = y
holds in q. The truth value of φ changes depending on the number of entities
actually represented by the unbounded entity e. Nevertheless, since M = 2, e
can represents any number of instances strictly greater than 2. In particular,
φ is true only in the case, e represents precisely 4 instances, and it is false in
every other case. Hence, in q, φ can be both true or false. By stretching the
model to a sufficient extent, we can avoid this kind of ambiguities (at the cost
of nondeterminism).

Stretching means augmenting the precision of the states by increasing the
value of M . This yields for every state with an abstract configuration a set of
states associated to more concrete configurations and represents the same origi-
nal pointer structure (i.e., these configurations are related by morphisms). The
first obvious question is, of course, how much concrete the resulting stretched
HABA should be. Clearly, the risk we run is that the model must be magnified
so much to become infinite which, in the context of model checking, would

176 Chapter 5 – Dynamic References

*

*

x
y

w z

y xw z

x
y

w z

yw z x

q

q′ Abstract level

Abstract level

Concrete level

Concrete level

Figure 5.21: Example of suitable K(φ).

mean to neutralise the complete system of abstraction built on unbounded en-
tities. Fortunately, for a given formula φ we need only a bounded stretching,
since after a certain point, more concrete HABAs would not provide any fur-
ther useful information. For a formula φ this bound, written K(φ), is given
by:

K(φ) = max(M + 1,
∑

x∈fbv(φ)

max {n+ 1 | x.an occurs in φ}). (5.18)

where fbv (φ) is the set of free and bound variables of φ.

Example 5.7.2. Consider the formula φ1 ≡ ∃x : ∃y : (z = x.a3 ∧ w.a2 = y),
and the HABA state q depicted in Figure 5.21 (top) where a possible given
interpretation of the variables in φ1 is considered. In order to satisfy the
formula, x and y must be interpreted as part of the unbounded entity. It is
clear from the picture that we must consider the unbounded entity to represent
at least 3 entities in order to find a suitable assignment for x and y that makes
the formula true in the state. K(φ1) = 9 (= 4 + 3 + 1 + 1) is obviously enough
to decide the validity of φ1.

Now consider φ2 ≡ ∃x : ∃y : (z.a5 = x.a2 ∧ w = y.a2) and state q′ (cf.
Figure 5.21, bottom part). In this case because of the given interpretation
of the free variable z and the offset .a5, it results that the unbounded entity
must represent at least 6 entities in order to find a suitable assignment for the
variable that makes φ2 valid in the state. This explains why we need to sum up
the expression related to free variables together with those related to bounded
variables. Note that K(φ2) = 13 (= 6 + 3 + 3 + 1).

5.7 Model checking Na``TL 177

Definition 5.7.3 (HABA stretching). Let H = 〈X,Q,E,−→, I,F〉 be a
HABA such that C(H) = M . The stretching of H up to M̂ (with M < M̂)
is the HABA H ⇑ M̂ = 〈X,Q′, E′,−→′, I ′,F ′〉 where for q ∈ Q let Sq =

{(q, Eq , µq, C) | cod(C) ⊆ M̂∗, Cq = dCeM} then

• Q′ =
⋃
q∈Q Sq ;

• E′(q, γ) = γ

• −→′ is the smallest relation such that:

q1 −→λ q2 ∧ γ1 =
λs=� γ2

(q1, γ1) −→′
λs

(q2, γ2)
∀λs : λ = dλseM

• I ′ =
⋃
q∈I Sq ;

• F ′ = {
⋃
q∈F Sq | F ∈ F}.

The automatonH ⇑M̂ includes for each state q ofH the set Sq containing all
the states obtained by assigning to entities with cardinality ∗, every cardinality
in {M + 1, . . . , M̂} ∪ {∗}. The transition relation −→′ is obtained from the
original one by adding for every transition q −→ q′, all possible transitions
from states in Sq to state Sq′ taking care that there exists a reallocation λs
between the configurations of the modified states. This constraint concerns the
compatibility of the new cardinalities of their entities. The initial and accept
states of H ⇑M̂ are those corresponding to initial and accept states of H.

Example 5.7.4. Consider the HABA depicted in Figure 5.22, such that C(H)=
2. The stretching up to 4 is shown in Figure 5.23. In this example we have:

Sq = {q1, q2, q3}

Sq′ = {q′1, q
′
2, q

′
3}.

Between q1 and q′1 there are no transitions since λ(e2, e4) = ∗, therefore, every
suitable λs(e2, e4) ∈ {3, 4, ∗}, but since Cq1(e2) = 3 and λ(e2, e5) 6= 0 (i.e.,
Cq1(e2) is redistributed between e4 and e5) it is clear that there cannot be a

reallocation q1 =
λs=� q′1. On the contrary, q3 and q′3 have the configurations

as q and q′, respectively. However, between q3 and q′3 there exist two tran-
sitions corresponding to the reallocations that assign to the pair (e2, e4) the
multiplicity 4 and ∗.

Consider now, the formula φ ≡ x.a5 = y where x and y in q have the
following interpretation: θ(x) = e1 and θ(y) = e3. In Example 5.7.2 we have
seen that in q (for M = 2) φ can be either true of false. In H ⇑4, the ambiguity
is resolved. φ holds only in q2 and it is false in q1 and q3 since in the latter e2
represents at least 5 entities.

Theorem 5.7.5. For all HABA H such that C(H) = M < M̂ : L(H) = L(H ⇑
M̂).

Proof. See Appendix B.3.

178 Chapter 5 – Dynamic References

1*1

*
1

1
1

2*

* 2

q

q′

e1 e2 e3

e4 e5

λ′

λ

Figure 5.22: The HABA H with C(H) = 2.

*

1 1

14

2*

* 2

1
1

1

1 * 1

23

3 2

1 3 1

1
1

1
3

1 4 1

24

4 2
q′3

q3

e5e4

e3e2e1

q′1

q1

e5e4

e3e2e1 e1 e2 e3

e4 e5

q′2

q2

Figure 5.23: The HABA H ⇑4.

Assumptions. In the remainder of this section, we assume that the necessary
duplication as well as stretching have been carried out already: that is, we will
assume that a state q ∈ Q has an extra component Nq ⊆ Eq that contains
the entities that are new in q, and that the global constant M equals K(φ) −
1. As for A``TL model-checking (cf. Section 4.5), other assumptions needed
below are that every quantified variable is different (i.e., the formula has been
α-converted) and every quantified variable actually appears free in the sub-
formula; that is, we only consider formulae ∃x.φ for which x ∈ fv (φ). Note
that this imposes no real restriction, since ∃x.φ is equivalent to ∃x.(x alive∧φ).

5.7.2 Valuations

As for the A``TL model-checking algorithm defined in Chapter 4, in a given
state, a valuation of a Na``TL formula is an interpretation of its free logical
variables as entities of the state. Such an interpretation is meant to establish
the validity of the atomic propositions within the formula, which in Na``TL
have the form α1 = α2, α new, and α1 α2. Because we allow unbounded
and multiple entities as interpretations of logical variables, a simple mapping

5.7 Model checking Na``TL 179

from variables to entities would not be enough to decide these atomic propo-
sitions. Here we face a generalisation of the problem encountered for A``TL
where we permitted the interpretation of variables onto the black hole. The
interpretation of the valuations should be able to express not only whether two
variables mapped onto an unbounded entity refer to the same instance or not.
In fact, in the latter case, it should provide us with information about the dis-
tance between the two instances (within the unbounded/multiple entity) where
the variables are supposed to be interpreted. Such information is necessary in
order to decide equality propositions (e.g. x.a2 = y.a5) as well as leads-to
propositions (e.g. x.a2 y.a5).

For a set of entities E let E−, E+ ⊆ LVar be two special sets of logical
variables defined as:

E− = {e− | e ∈ E}

E+ = {e+ | e ∈ E}.

In the following let E± = E− ∪ E+. For these special variables, we will have
always a fixed interpretation: variable e− is interpreted in the first instance of
the entities represented by e, and e+ is interpreted in the last instance of e.

Definition 5.7.6 (Valuations). Let γ be a configuration. A γ-valuation is a
tuple (ψ,Θ, δ) where

• ψ is a Na``TL-formula;

• Θ:fv (ψ) ∪E±
γ ⇀ Eγ a partial function mapping every free variable to an

entity such that ∀e ∈ E±
γ : Θ(e−) = Θ(e+) = e.

• δ:(fv (ψ)∪E±
γ)× (fv(ψ)∪E±

γ) ⇀ M∗, a partial function that satisfies the
conditions in Table 5.5.

We denote by Vγ the set of all γ-valuations ranged over by v and we write Vq
for Vγq .

The function δ is the notion of distance that is used in a valuation to-
gether with the interpretation Θ to decide the equality and leads-to propo-
sitions. Some comments on the conditions reported in Table 5.5 are now in
order. Condition (Delta Gamma 1) enforces the consistency between δ and
the cardinality function Cγ of the configuration. In particular it implies that
{(e−, e+) | e ∈ E±} ⊆ dom(δ). Condition (Delta Gamma 2) gives consis-
tency between δ and µγ . Condition (Delta Theta 1) and (Delta Theta 2)
relate Θ and δ. (Delta Theta 1) can be rephrased saying that the distance
between two variables is defined only if the variables are interpreted in reachable
entities. The other direction is also a reasonable property to require. However,
it is not necessary to impose it since it can be derived by the other properties
as stated by the following result.

Proposition 5.7.7. For all γ-valuations (ψ,Θ, δ):

180 Chapter 5 – Dynamic References

(Delta Gamma 1) ∀e ∈ Eγ : δ(e−, e+) ⊕ 1 = Cγ(e)
(Delta Gamma 2) ∀e1, e2 ∈ Eγ : (e1 ≺γ e2 ⇔ δ(e+1 , e

−
2) = 1)

(Delta Theta 1) ∀x, y ∈ fv(ψ) :
(x, y) ∈ dom(δ) ⇒ x, y ∈ dom(Θ) ∧ Θ(x) �∗

γ Θ(y)
(Delta Theta 2) Θ(x) = e ⇔ δ(e−, x) � 0 ∧ δ(x, e+) � 0

(Delta Met 1) (x, x) ∈ dom(δ) ⇒ δ(x, x) = 0
(Delta Met 2) (x, y), (y, z) ∈ dom(δ) ⇒ (x, z) ∈ dom(δ)
(Delta Met 3) (x, y), (x, z) ∈ dom(δ) ⇒ (δ(x, y) ⊕ δ(y, z) = δ(x, z))∨

(δ(x, z) ⊕ δ(z, y) = δ(x, y))

Table 5.5: Conditions on a valuation (ψ,Θ, δ).

*

x
y

w
z

xyΘ(y)−
w

z

Θ(y)+

q

q′

Concrete Level

Abstract Level

Figure 5.24: An interpretation of the variables corresponding to a valuation.

(a) (∃j > 0 : µj ◦Θ(x) = Θ(y) 6= ⊥) ⇒ (x, y) ∈ dom(δ)

(b) Θ(x) = Θ(y) 6= ⊥ ⇒ (x, y) ∈ dom(δ) ∨ (y, x) ∈ dom(δ)

Proof. See Appendix B.3.

Corollary 5.7.8. For all γ-valuations (ψ,Θ, δ) : x ∈ dom(Θ) ⇒ (x, x) ∈
dom(δ).

Proof. Straightforward from Proposition 5.7.7.

Example 5.7.9. Consider Figure 5.24. Assume that in a valuation, Θ and δ
are defined as follows:

δ(Θ(y)−, y) = 1 δ(Θ(y)−, x) = 3
δ(y,Θ(y)+) = ∗ δ(x,Θ(y)+) = 2
δ(y, x) = 2 δ(x, y) = ⊥
δ(w,Θ(y)−) = 2 δ(z,Θ(y)−) = 2

5.7 Model checking Na``TL 181

And δ(w, x) = δ(z, x) = δ(w,Θ(y)+) = δ(z,Θ(y)+) = ∗. Note that, since Θ(w)
and Θ(z) are unreachable we have δ(w, z) = δ(z, w) = ⊥. On the concrete
level, for a state where the unbounded entity is instantiated by six concrete
entities, the interpretation given by the valuation corresponds to evaluate the
free variables as depicted in the concrete state q′.

Metrics versus δ. Since δ expresses our notion of distance, it is somehow
natural as well as interesting to relate this concept to metrics in the context
of metric spaces. For, let us deviate a bit from the exposition of the model
checking algorithm and make a short comparison.

A metric space is a set S with an associated function m : S × S → R>0

(called metric) satisfying the following properties:

1. ∀x ∈ S : m(x, x) = 0

2. ∀x, y ∈ S : m(x, y) = 0 ⇒ x = y

3. ∀x, y ∈ S : m(x, y) = m(y, x)

4. ∀x, y, z ∈ S : m(x, z) 6 m(x, y) +m(y, z)

By condition 2, the distance between two points is zero only if these two points
are actually the same. Condition 3 is the symmetric law and 4 is the well-
known triangle inequality. Different choices of metric on a given set give rise
to different metric spaces. If condition 2 is dropped, a pseudo metric space
is obtained, whereas without condition 3, we would obtain a so-called quasi
metric space [104]. As defined in Definition 5.7.6, the partial function δ clearly
satisfies postulate 1 of a metric by (Delta Met 1). Moreover, from condition
(Delta Met 1)−(Delta Met 3) it is possible to derive postulate 4 as stated
by:

Proposition 5.7.10 (triangle inequality).

(x, y), (y, z) ∈ dom(δ)⇒ δ(x, z) 6 δ(x, y)⊕ δ(y, z).

Proof. (x, y), (y, z) ∈ dom(δ) implies by (Delta Met 2) (x, z) ∈ dom(δ).
Then, by (Delta Met 3) we have

δ(x, y)⊕ δ(y, z) = δ(x, z) or (5.19)

δ(x, z)⊕ δ(z, y) = δ(x, y) (5.20)

If (5.19) holds then the statement of the proposition holds as well. If (5.20)
holds then we have

δ(x, y)⊕ δ(y, z) = δ(x, z)⊕ δ(z, y)⊕ δ(y, z) > δ(x, z)

that is what we wanted to prove.

Hence, δ, where defined, satisfies condition 1 and 4. By the consideration
described above we could then classify δ as a “partial pseudo-quasi metric”.

182 Chapter 5 – Dynamic References

Abstract semantics and distance for navigation expressions. We can
adapt the definition of [[α]] given in Section 5.2 in order to exploit the informa-
tion given by a valuation. First of all let us consider an example that shows
some difficulties towards such definition.

Example 5.7.11. Consider the configuration γ represented in Figure 5.25 and
a γ-valuation v were Θv(x) = e1 and Θv(y) = e10 and δv is given by:

δv(x, e
−
1) = 0 δv(x, e

+
1) = 0

δv(x, e
−
2) = 1 δv(x, e

+
2) = 1

δv(x, e
−
3) = 2 δv(x, e

+
3) = 4

δv(x, e
−
4) = 5 δv(x, e

+
4) = 6

δv(x, e
−
5) = 7 δv(x, e

+
5) = 7

δv(x, e
−
6) = 8 δv(x, e

+
6) = 9

δv(x, e
−
7) = 10 δv(x, e

+
7) = 10.

The natural way to define the entity corresponding to expression x.an would be
to exploit δv by taking the entity e such that δv(x, e

−) 6 n 6 δv(x, e+). Hence,
for example, the interpretation of x.a6 should be e4 whereas x.a8 should be
interpreted onto e6. However, this is too naive. In fact, consider the expressions
x.a14 or x.a25, it is clear that the approach described before does not work since
there are no entities with a distance more than 10 from x, and nevertheless
looking at the configuration, both expressions must point to an existing entity.

It is not difficult to see that the problem described in the previous example
stems from the existence of a cycle. In order to deal with it we introduce the
following notion. For a configuration γ = (E, µ, C) and a γ-valuation v let
Cv : (LVar× N) ⇀ M∗ given by:

Cv(x, k) = δv(x,Θv(x)
+)⊕ ◦

∑
16i6k C(µ

i(Θv(x))).

Informally, Cv(x, k) returns the cumulative cardinality obtained performing k
steps from the interpretation of x in v, i.e, Θv(x) up to µk(Θ(x)) and summing
up all the cardinalities of the entities encountered in between. Note that if
there exists a cycle some cardinality may be considered more than once.

Example 5.7.12. Consider again the configuration γ in Figure 5.25. We have:

Cv(x, 1) = 1 Cv(x, 2) = 4 Cv(x, 3) = 6
Cv(x, 4) = 7 Cv(x, 5) = 9 Cv(x, 6) = 10
Cv(x, 7) = 13 Cv(x, 8) = 15 Cv(x, 9) = 16 . . .

Looking at the previous values we can see that performing 7 steps from Θ(x), at
the concrete level, we traverse 13 entities, whereas after 8 steps at the concrete
level we visit 15 entities. Therefore, at this point it should be obvious that the
interpretation of x.a14, should be the entity µ8(Θ(x)).

5.7 Model checking Na``TL 183

e9 e8

e1 e2 e4e3 e5

e6e7

e10

y

x

2

2

2

3

3

Figure 5.25: A cycle induces a difference between distance and cumulative
cardinality.

Definition 5.7.13. Let γ = (E, µ, C) be a configuration and v = (φ,Θ, δ) ∈ Vγ .
The abstract semantics of the navigation expression is the function [[·]]γ,v :

Nav → (Ent⊥ × (M∗ ∪ {0})) given by:

[[nil]]γ,v = (⊥, 0)

[[x.an]]γ,v =

(Θ(x), δ(Θ(x)−, x)⊕ n) if δ(x,Θ(x)+) > n
(µj ◦Θ(x), n− Cv(x, j − 1)− 1) if δ(x,Θ(x)+) < n and

j=min{k>0 | Cv(x, k)>n}
(⊥, 0) otherwise

The abstract semantics of the navigation expression x.an is defined as a pair
(e, k) where e is either the (abstract) entity in which x.an is actually interpreted
or ⊥ in case the x.an dereferences a null pointer. The second component
k ∈ {0, . . .M, ∗} represents the offset of the instance corresponding to x.an

with respect to the first instance in e. If e = ⊥ then k is set to 0. Note
that the value n − C(x, j − 1) − 1 can be computer since n < K(φ) and it
is not ∗. As expected the semantics of nil does not denote any entity and
therefore is (⊥, 0). As a notation we write [[α]]1 and [[α]]2 for the first and
the second component of [[α]], respectively. Moreover, [[α1]] = [[α2]] stands for

[[α1]]
1

= [[α2]]
1 ∧ [[α1]]

2
= [[α2]]

2
. Finally, we write [[α]] = ⊥ and [[α]] 6= ⊥ for

[[α]]1 = ⊥ and [[α]]1 6= ⊥ respectively.

Example 5.7.14. Using the cumulative cardinality computed in the previous
example, we have [[x.a3]]γ,v = (µ2 ◦Θ(x), 3− Cv(x, 1)− 1) = (e3, 1).

In the definition of atomic valuations (see Definition 5.7.15) it is useful to
refer to a notion of distance of two navigation expressions α1 and α2 in the
context of some valuation. To be more specific we do not need the precise
distance between α1 and α2, but it is enough to know whether the distance is
undefined (i.e., α2 is unreachable from α1), zero (i.e., α1 and α2 denotes the
same instance of the same entity), or positive (i.e., from α1 it is possible to reach
α2). These values are precisely what is needed to decide atomic propositions
such as equations like α1 = α2 and leads-to propositions like α1 α2. Thus, we

184 Chapter 5 – Dynamic References

define a three-valued function ∆ that given two navigation expressions returns
undefined (⊥), zero, or strictly positive (>) depending on the distance between
the two expressions.

For a configuration γ and a v ∈ Vγ , the function ∆γ,v : Nav × Nav →
{⊥, 0,>} is given by:

∆γ,v(nil ,nil) = 0

∆γ,v(x.a
n,nil) =

0 if [[x.an]]
1
γ,v = ⊥

> if ∃j > 0 : µj([[x.an]]
1
γ,v) = ⊥

⊥ otherwise

∆γ,v(nil , x.an) =

{
0 if [[x.an]]

1
γ,v = ⊥

⊥ otherwise

∆γ,v(x.a
n, y.am) =

0 if [[x.an]]
1
γ,v = [[y.am]]

1
γ,v = ⊥

0 if [[x.an]]γ,v = [[y.am]]γ,v 6= ⊥ and [[x.an]]
2
γ,v 6= ∗

0 if [[x.an]]γ,v = [[y.am]]γ,v 6= ⊥ and [[x.an]]
2
γ,v = ∗

and (δ(x, y)⊕m = n ∨ δ(y, x)⊕ n = m))

> if [[x.an]]
1
γ,v 6= [[y.am]]

1
γ,v

and ∃j > 0 : µj([[x.an]]
1
γ,v) = [[y.am]]

1
γ,v

> if [[x.an]]1γ,v = [[y.am]]1γ,v 6= ⊥

and [[x.an]]
2
γ,v < [[y.am]]

2
γ,v

> if [[x.an]]
1
γ,v = [[y.am]]

1
γ,v 6= ⊥

and [[x.an]]
2
γ,v = [[y.am]]

2
γ,v = ∗

and (δ(x, y)⊕m > n ∨ δ(y, x)⊕ n < m)

⊥ otherwise

The distance between nil and itself is 0 by definition. The distance between
an expression x.an and nil is 0 if x.an refers to a null pointer and > if x.an

reaches a null pointer. The symmetric case ∆γ,v(nil , x.an) is defined only
if x.an denotes a null pointer and undefined otherwise. This is because nil
cannot lead to any special entity. The more complex case is ∆γ,v(x.a

n, y.am).
In particular by definition the distance between x.an and y.am is 0 if either
both expressions dereference a null pointer, or they have the same semantics
(defined in both components). However, in this last case, special attention must

be devoted to the case [[x.an]]
2
γ,v = ∗. In fact, this means that both x.an and

y.am denote something beyond our range of precision, therefore it is not clear
whether the expressions denote the same instance or not. By definition ofK(φ),

[[x.an]]
2
γ,v = ∗ can only happen when x and y are interpreted in the same entity

as x.an and y.am (recall that n,m < K(φ)). Thus, to solve this ambiguity we
exploit the distance δ(x, y). It is straightforward to see that x.an and y.am

point to the same instance (of the entity) if δ(x, y)⊕m = n or δ(y, x)⊕n = m

5.7 Model checking Na``TL 185

depending whether the interpretation of x precedes the interpretation of y or
vice-versa. Finally, the distance ∆γ,v(x.a

n, y.am) is positive, either when the
entity where x.an is interpreted reaches the interpretation of y.am after j > 0
steps (provided [[x.an]]

1
γ,v 6= [[y.am]]

1
γ,v). Otherwise, when x.an and y.am are

interpreted in the same entity but the offset (from the first instance of the
interpretation) of x.an is smaller than the offset of y.am. Again, as discussed
above, if both offsets are ∗ then a case distinction is needed according whether
(x, y) or (y, x) belongs to dom(δ).

Having at our disposal the functions [[·]]γ,v and ∆γ,v, we can introduce the
atomic proposition valuations of a state q that are those q-valuations of basic
propositions of Na``TL (i.e., freshness predicates, entity equations and leads-to
predicates) that make the corresponding propositions true.

Definition 5.7.15. Let H be a HABA and let q ∈ QH. The atomic proposition
valuations of q are defined by the set AV q ⊆ Vq of all v = (φ,Θ, δ) such that:

• φ = tt;

• φ = (α new) and [[α]]
1
qγ ,v
∈ Nq;

• φ = (α1 = α2), and ∆qγ ,v(α1, α2) = 0.

• φ = α1 α2, and (∆qγ ,v(α1, α2) = 0 or ∆qγ ,v(α1, α2) = >)

An atomic valuation with φ = α new must interpret α among the set of new
entities in the state, i.e., Nq. For the equality proposition α1 = α2, the distance
between α1 and α2 must be 0. For the leads-to proposition α1 α2 the
distance between α1 and α2 must be either 0 or positive (>).

Model-checking Ln models. When we want to model check the HABA
Hp representing the semantics of a program p ≡ decl v1, . . . , vn : (s1 ‖ · · · ‖
sk) ∈ Ln, we should make sure that the interpretation Θ in the valuations
maps the special (free) logical variables DeclLVar = {xv1 , . . . , xvn} onto the
special entities representing program variables, i.e., DeclPVar = {ev1 , . . . , evn}
according to the strategy described in Section 5.5.2. That is:

Θ �DeclLVar = ϑ

where ϑ is the fixed special interpretation that links DeclLVar to DeclPVar
defined by (5.6).

The next is the standard definition of the closure of a formula φ as already
defined for the A``TL model checking algorithm (cf. Section 4.5); we repeat it
for completeness reasons.

Definition 5.7.16. Let φ be an Na``TL-formula. The closure of φ, CL(φ), is
the smallest set of formulae (identifying ¬¬ψ with ψ) such that:

• φ, tt,ff ∈ CL(φ);

186 Chapter 5 – Dynamic References

• ¬ψ ∈ CL(φ) iff ψ ∈ CL(φ);

• if ψ1 ∨ ψ2 ∈ CL(φ) then ψ1, ψ2 ∈ CL(φ);

• if ∃x.ψ ∈ CL(φ) then ψ ∈ CL(φ);

• if Xψ ∈ CL(φ) then ψ ∈ CL(φ);

• if ¬Xψ ∈ CL(φ) then X¬ψ ∈ CL(φ);

• if ψ1 Uψ2 ∈ CL(φ) then ψ1, ψ2,X(ψ1 Uψ2) ∈ CL(φ).

5.7.3 Tableau-graph for Na``TL

In the rest of the chapter, for ψ ∈ CL(φ) let

Θ � ψ = Θ � fv (ψ)

δ � ψ = δ � (fv (ψ) ∪ E± × fv (ψ) ∪ E±).

We now construct a graph that will be the basis of the model-checking algo-
rithm. The nodes of this graph are called atoms and are built from states of a
HABA and valuations of formulae from the closure.

Definition 5.7.17 (atom). Given a HABA H and an Na``TL-formula φ, an
atom is a pair (q,D) where q ∈ QH, D ⊆ {(ψ,Θ, δ) ∈ Vq | ψ ∈ CL(φ)} such
that for all v = (ψ,Θ, δ) ∈ Vq with ψ ∈ CL(φ):

• AV q ⊆ D;

• if ψ = ¬ψ′, then v ∈ D iff (ψ′,Θ, δ) /∈ D;

• if ψ = ψ1 ∨ ψ2, then v ∈ D iff (ψi,Θ � ψi, δ � ψi) ∈ D for i = 1 or i = 2;

• if ψ = ∃x.ψ′, then v ∈ D iff there exists a (ψ′,Θ′, δ′) ∈ D such that
Θ = Θ′ � ψ, δ = δ′ � ψ, and Θ′(x) 6= ⊥;

• if ψ = ¬Xψ′, then v ∈ D iff (X¬ψ′,Θ, δ) ∈ D;

• if ψ = ψ1 Uψ2, then v ∈ D iff either (ψ2,Θ � ψ2, δ � ψ2) ∈ D, or both
(ψ1,Θ � ψ1, δ � ψ1) ∈ D and (Xψ,Θ, δ) ∈ D.

The set of all atoms for a given formula φ constructed for HABA H is
denoted AH(φ), ranged over by A,B. We denote the components of an atom
A by (qA, DA).

In order to define the transitions between atoms in AH(φ), we need to
define a notion of correspondence between some components of valuations of
the source atom and valuations of the target atom. This correspondence must
be such that the resulting graph is sound with respect to the semantics of
the formulae and the semantics of the underlying HABA. First we need some
intermediate definitions.

5.7 Model checking Na``TL 187

31

3

1

12

1 2 1 1 1

1
31

3

1

1

1 2 1

1

2

1 1

e1 e3 e4

e6e5 e7

e2e1 e3 e4

e5 e7

e2

e6

q

q′

Figure 5.26: Weakly connected graphs defined by a reallocation.

Auxiliary notation. For sets S1 and S2 the disjoint union is S1] S2 =
(S1 × {1}) ∪ (S2 × {2}). A relation R on sets S1 and S2 can be seen as a
directed graph GR = (S1]S2,R) with S1]S2 as a set of nodes and R as a set
of arcs. For such a graph there are two injective functions ι1 : 2(S1]S2) → 2S1

and ι2 : 2(S1]S2) → 2S2 that project a subset of nodes S ⊆ S1] S2, onto S1

and S2:

ι1(S) = {a | (a, 1) ∈ S}

ι2(S) = {a | (a, 2) ∈ S}.

An undirected graph is called connected if each node is reachable from any
other node. A directed graph is called weakly connected if neglecting the direc-
tion of the arcs (i.e., treating the graph as an undirected one) it is connected.
A connected subgraph is called maximal if it is not a proper subgraph of any
other connected subgraph.

Example 5.7.18. Consider the transitions q −→λ q
′ in Figure 5.26 (left). Con-

sider the graph depicted in the right part of the same figure. It is obtained from
the reallocation λ as relation between the sets of entities Eq and Eq′ . In this
case we have: sets {e1, e5}, {e2, e5}, {e2, e6}, {e3, e6}, {e1, e2, e5}, {e2, e3, e6}
are (weakly) connected. Sets {e4, e7} and {e1, e2, e3, e5, e6} are (weakly) max-
imal connected. An example of non-connected set is {e1, e3, e5, e6}.

Proposition 5.7.19. For q1 =
λ
� q2, if E is a maximal weakly connected

subgraph of (Eq1] Eq2 , λ) such that ⊥ /∈ E, then Cq1(ι1(E)) = Cq2(ι2(E)).

Proof. See Appendix B.3.

This proposition states that in a reallocation λ, the consistency on cardinal-
ities11 is not limited to an entity e and its images (via λ): it naturally extends
to the level of weakly maximal connected subgraphs derived by λ. For exam-
ple, in Figure 5.26, there exists a correspondence between the global weight

11⊥ is excluded since it is not a proper entity and it does not have a cardinality. Therefore
it is meaningless to require any kind of consistency.

188 Chapter 5 – Dynamic References

of {e1, e2, e3} and {e5, e6} that are projections of a maximal weakly connected
subgraph. The same consistency criterion holds for {e4} and {e7} since {e4, e7}
is maximal connected.

Atom reallocations. We need now to define the notion of arcs between
atoms. Similar to the graph we have constructed for the model-checking algo-
rithm for A``TL (cf. Definition 4.5.11), it should not be a surprise that these
arcs will be of the form:

(q,D) −→λ (q′, D′). (5.21)

In defining this transition relation, however, few aspects deserve special atten-
tion. More specifically, there exist some dependencies between D and D′ in
case the former contains valuations with formulae involving a next operator,
i.e., of the form Xψ. In fact, such formulae express properties that are not con-
fined to the current atom A but, on the contrary, refer to every atom connected
to A by a transition. Therefore, if (Xψ,Θ, δ) ∈ D and (ψ,Θ′, δ′) ∈ D′ we have
the following dependencies:

• the interpretation given by Θ′ must agree with the interpretation Θ ac-
cording to the reallocation λ;

• the distance given by δ′ must agree to the distance δ at least for those
entities that are “invariant” under the transition.

The correspondence between these components is not trivial. For example, it
is clear that we would like to have Θ′(x) = λ ◦Θ(x). However, for HABA with
references, we can very well have that |λ(Θ(x))| > 1 therefore, Θ′(x) can be
interpreted onto an element of λ(Θ(x)), say e′. Nevertheless, since Θ′(x) = e′

imposes some restrictions on δ′ (according to the definition of valuation) then
it could be that these restrictions are incompatible with the dependencies that
must exist between δ′ and δ. The risk we run here is to set up a transition
between atoms that would be unsound w.r.t. the semantics of Na``TL and
the behaviour of the HABA. These considerations lead us to define, given a
valuation v which is the set of sound valuations w.r.t. v after a reallocation λ.
We use this set in order to rule out “bad” valuations in the target atom.

Definition 5.7.20. For states q and q′, the valuation reallocator from q to q′

is the function [−◦−] : (Eq ×Eq →M)×Vq → 2Vq′ that, given a q-valuation v

and a reallocation λ : q =� q′, returns a set of q′-valuations compatible w.r.t.
v and λ. It is defined as:

[λ ◦ (ψ,Θ, δ)] = {(ψ,Θ′, δ′) ∈ Vq′ | condition 1 and 2 hold}

1. ∀x ∈ fv(ψ) : Θ′(x) ∈ λ ◦Θ(x)

2. for all weakly maximal connected subgraph Emcs of (Eq]Eq′ , λ) and for
all x ∈ fv(ψ) such that Θ(x) ∈ ι1(Emcs):

5.7 Model checking Na``TL 189

(a) δ(first(ι1(Emcs))
−, x) = δ′(first(ι2(Emcs))

−, x)

(b) δ(x, last(ι1(Emcs))
+) = δ′(x, last(ι2(Emcs))

+)

(c) ∀y ∈ fv(ψ) : Θ(y) ∈ ι1(Emcs) ⇒ δ(x, y) = δ′(x, y).

Condition 1 states that for free variable x, the interpretation Θ′(x) must be
obtained by applying λ to Θ(x). Condition 2(c) enforces the correspondence
between the distance of variables x, y interpreted on Emcs. Moreover, the
distance between a variable x w.r.t. the beginning and the end of the maximal
connected graph (where x is interpreted), before and after the transition must
be preserved (conditions 2(a) and 2(b)). The other distances between x and the
entities within Emcs can be derived from those distances imposed by condition
2. Note that since Θ′ and δ′ are in the context of a q′-valuation, they satisfy,
by definition, the conditions of Table 5.5. The choice of constraints imposed in
the previous definition derives from the compatibility we want to have between
the graph GH and the allocation sequences in the language of H. It becomes
clear in the next example.

Example 5.7.21. Consider the reallocation λ on top of Figure 5.27 where
K(φ) = 4 and:

δ(e−1 , y) = 0 δ(y, e+1) = 1

δ(y, e−2) = 2 δ(y, e+2) = ∗

δ(y, x) = ∗

δ(e−1 , x) = ∗ δ(x, e+1) = ∗

δ(x, e−2) = ∗ δ(x, e+2) = ∗

The maximal weakly connected subgraph we are concerned with in this example
is given by E = ({e1, e2, e3, e4}, λ). According to Definition 5.7.20, valuation
(ψ,Θ′, δ′) in [λ ◦ (ψ,Θ, δ)] has at least Θ′(x) ∈ {e3, e4} because of condition 1.
Furthermore, by condition 2 the following distances must be preserved:

δ′(e−3 , y) = δ(e−1 , y) = 0
δ′(y, e+4) = δ(y, e+2) = ∗
δ′(y, x) = δ(y, x) = ∗
δ′(e−3 , x) = δ(e−1 , x) = ∗
δ′(x, e+4) = δ(x, e+2) = ∗

From these distances it is possible to derive the others. We start by computing
the values for y. Since δ′(e−3 , y) = 0 and by condition (Delta Gamma 1) of
Table 5.5 it follows δ′(e−3 , e

+
3)⊕ 1 = ∗, then we have:

δ(y, e+3)⊕ 1 = ∗

which has as solution δ(y, e+3) ∈ {3, ∗}. Moreover, from these values we can
deduce δ(y, e−4) = δ(y, e+3)⊕ 1 = ∗.

190 Chapter 5 – Dynamic References

Concerning x we can immediately exclude Θ′(x) = e4 otherwise δ′(x, e+4) 6=
∗ contradicting condition 2 of Definition 5.7.20. Hence, Θ′(x) = e3. Because
of condition (Delta Met 3) of Table 5.5,

∗ = δ(e−3 , e
+
3)⊕ 1 = δ′(e−3 , x)⊕ δ

′(x, e+3)⊕ 1

and since δ′(e−3 , x) = ∗ the solution of the previous equation is δ′(x, e+3) ∈
{0, 1, 2, 3, ∗}. Moreover, since C(e4) = 1 then δ′(x, e+4) = δ′(x, e−4) = 0. Sum-
marising we have the following possibilities for the other values of δ′:

δ′(y, e+3) ∈ {3, ∗}
δ′(y, e−4) = ∗

δ′(x, e+3) ∈ {0, 1, 2, 3, ∗}
δ′(x, e−4) = ∗

Some of these solution are impossible, and the informations we have to our
disposal allow us to be more precise and by narrowing the set of possible δ′.
We have not used so far that δ′(y, x) = ∗. In fact this implies δ′(y, e+3) = ∗
excluding therefore the value 3 in the solutions previously computed. Moreover,
we can use that δ′(x, e+4) = ∗ and δ(e−4 , e

+
4) = 0 to figure out that actually the

range of solutions for δ′(x, e+3) is much smaller than {0, 1, 2, 3, ∗}. In fact,

∗ = δ′(x, e+4) = δ′(x, e−4) = δ′(x, e+3)⊕ δ′(e+3 , e
−
4) = δ′(x, e+3)⊕ 1.

The solution of the last equation is δ′(x, e+3) ∈ {3, ∗}.
We may wonder why [λ ◦ (ψ,Θ, δ)] contains sensible options for the valu-

ations (ψ,Θ′, δ′) that must be contained in an atom in order to yield an edge
in the graph. In order to give some insights, let us consider how this abstract
transition is reflected at the concrete level. In the bottom of the Figure 5.27,
two possible concrete states are depicted. They are generated from q and q′,
and connected by a reallocation λ′ that is a concretion of λ. This is the partic-
ular case where e2 is instantiated with 11 concrete entities: e21, . . . , e

2
11 and e3 is

instantiated with 12 entities, namely e31, . . . , e
3
12. The shadow boxes depict the

generator. The symbolic interpretation given in the valuation by Θ and δ, is
projected at the concrete level to several choices for a concrete interpretation θ.
Indeed, for x we can have: either θ(x) = e25, or θ(x) = e26 or θ(x) = e27. Fixing
one of these possibilities, by λ′ we obtain θ′(x). Thus after the transition, we
get the following possibilities:

θ(x) = e25 ⇒ Θ′(x) = e3 δ′(e−3 , x) = ∗ δ′(x, e+3) = ∗
θ(x) = e26 ⇒ Θ′(x) = e3 δ′(e−3 , x) = ∗ δ′(x, e+3) = ∗
θ(x) = e27 ⇒ Θ′(x) = e3 δ′(e−3 , x) = ∗ δ′(x, e+3) = 3.

Note that the first two options are actually the same and this is according to
the solutions we have found before.

5.7 Model checking Na``TL 191

*2

1

*
2

*

1

e4e3

e32

x

e31 e33 e34 e35 e36 e37

e2

e12e11

e38

θ

θ′

λ

e2

e4

e1

q′

q

y

y

e1

e3

λ′

y

θ′

θ

x

e39 e312 e14e311

e210 e211e29e28e26e25e24e23e22e21

e310

x

e27

Figure 5.27: Dependencies (at the abstract and concrete level) between dis-
tances of free variables in a weakly maximal connected subgraph.

The definition of valuation reallocator is extended point-wise to a set V ⊆
Vq :

[λ ◦ V] =
⋃

v∈V

[λ ◦ v]

we can then define the composition for a chain of reallocations λj , · · · , λ0 (with
j > 0) of q-valuation:

[λj ◦ · · ·λ0 ◦ v] = [λj ◦ [λj−1 ◦ · · ·λ0 ◦ v]]

Definition 5.7.22 (tableau graph). The tableau graph for a HABA H and
an Na``TL-formula φ, denoted GH(φ), consists of vertexes AH(φ) and edges
→ ⊆ AH(φ) × (Ent × Ent →M∗)×AH(φ) such that (q,D) −→λ (q′, D′) iff

• q −→λ q
′

• for all Xψ ∈ CL(φ) : (Xψ,Θ, δ) ∈ D ⇔ ∃(ψ,Θ′, δ′) ∈ [λ ◦ (ψ,Θ, δ)] ∩D′.

The reallocation λ attached on the edge is the same as the reallocation of the
corresponding transition in the HABA. Furthermore, in case of a formula Xψ in
the source atom, there is a transition if we have a valuation on the target state
that contains ψ where the components Θ′, and δ′ are compatible (in the sense
of Definition 5.7.20) with the reallocation λ and the corresponding components
of the source state. Since the set [λ ◦ (Θ, δ)] is not always a singleton, there
can be more than one transition to different atoms, concerning the same Xψ
(as we have seen in Example 5.7.21).

192 Chapter 5 – Dynamic References

5.7.4 Paths

Definition 5.7.23. An (allocation) path in GH(φ) is an infinite sequence π =
(q0, D0) λ0 (q1, D1) λ1 · · · such that:

1. q0λ0q1λ1 · · · ∈ runs(H);

2. for all i > 0, (qi, Di) −→λi
(qi+1, Di+1);

3. for all i > 0 and all (ψ1 Uψ2,Θ, δ) ∈ Di, there exists a j > i such that
∃(ψ2,Θ

′, δ′) ∈ Dj ∩ [λj−1 ◦ · · ·λi ◦ (ψ2,Θ � ψ2, δ � ψ2)].

The next is the important concept of fulfilling path.

Definition 5.7.24 (fulfilling path). Given an allocation path π in GH(φ), we
say that π fulfils φ if the underlying run generates an allocation triple (σ,N, θ)
such that σ,N, θ � φ.

As usual, if φ is clear from the context, we call π a fulfilling path. Further-
more, if there exists (σ,N, θ) ∈ L(H) such that σ,N, θ |= φ we say that φ is
H-satisfiable. In contrast with the definition of HABA given in Chapter 4, a
run ρ of the HABAs we consider in this paper does not always generates triples
(σ,N, θ) in the sense of Definition 5.3.24. We write Gen(ρ) for the set of al-
location triples generated by ρ, and for a path π we write Gen(π) for Gen(ρ)
where ρ is the underlying run of π.

There is a correspondence between the satisfiability of a formula in the
HABA and the existence of a fulfilling path in the tableau graph.

Proposition 5.7.25. φ is H-satisfiable if and only if there exists a path in
GH(φ) that fulfils φ.

Proof. See Appendix B.3.

Definition 5.7.26. A subgraph G′ ⊆ GH(φ) is self-fulfilling if every node A
in G′ has at least an outgoing edge and for every (ψ1 Uψ2,Θ, δ) ∈ DA there
exists a node B ∈ G′ such that

• A = A0 −→λ0
A1 −→λ1

· · · −→λi−2
Ai−1 −→λi−1

Ai = B

• ∃(ψ2,ΘB , δB) ∈ DB ∩ [λi−1 ◦ · · ·λ0 ◦ (ψ2,Θ � ψ2, δ � ψ2)].

A prefix in GH(φ) is a sequence A0 −→λ0
A1 −→λ1

· · · −→λi−2
Ai−1 −→λi−1

Ai
such that A0 is an initial atom (i.e., qA0 ∈ IH) and Ai is in a self-fulfilling
subgraph. Let Inf (π) denote the set of nodes that appear infinitely often in
the path π. Inf (π) is a strongly connected subgraph (SCS). We can prove the
following implication:

Proposition 5.7.27. π is a fulfilling path in GH(φ)⇒ Inf (π) is a self-fulfilling
SCS of GH(φ).

Proof. See Appendix B.3.

5.7 Model checking Na``TL 193

Finally, we can collect all the previous results into the following theorem:

Theorem 5.7.28. For any HABA H and formula φ, it is possible to verify
mechanically whether H 2 φ.

Proof. By Proposition 5.7.25, in order to prove that H 2 φ, it is sufficient to
check that in the graph GH(φ) there does not exist a fulfilling path π. By
Proposition 5.7.27, for a path π to be fulfilling it is necessary to have as a
Inf (π) a self-fulfilling SCS. Thus, in order to check that φ is not satisfiable in
H, it is sufficient to check that every self-fulfilling SCS is not the Inf of any
path. That is, if Π is the set of all paths in GH(φ) and

Πful = {π ∈ Π | π is a fulfilling}

Π1 = {π ∈ Π | Inf (π) is a self-fulfilling SCS}

in order to prove Πful = ∅ it suffices to show that Π1 = ∅ (since Πful ⊆ Π1).
But this is the case (see below) if the following set ΠSCS is empty.

ΠSCS = {G′ ⊆ GH(φ) | G′ is a self-fulfilling SCS such that a) and b) hold }

where

a) there exists a fulfilling prefix of G′;

b) for all F ∈ FH : F ∩ {qB |B ∈ G
′} 6= ∅.

We prove that
ΠSCS = ∅ ⇒ Π1 = ∅.

By contradiction, assume Π1 6= ∅ (and ΠSCS = ∅). Take π = A0λ0A1λ1 · · · ∈
Π1. Since π is a path then ρπ = qA0λ0qA1λ1 · · · is an accepting run of H
(condition 1 of Definition 5.7.23). However, this implies that condition b)
of the definition of ΠSCS is satisfied. Furthermore, since π is a path there
exists a prefix for Inf (π). Hence, it must be Inf (π) ∈ ΠSCS which contradicts
ΠSCS = ∅. Since SCS are finite and there are only a finite number of them, it
is possible to verify the emptiness of ΠSCS .

The proof of Theorem 5.7.28 suggests us a procedure described by Algo-
rithm 3 that can be used to verify whether H 2 φ.

5.7.5 Discussion and future work: the HABA emptiness problem.

By Algorithm 3 we can only verify whether φ is not H-satisfiable but not the
reverse. In other words, the model checking algorithm described here pro-
vides us with a partial decidability result. The obvious manifestation of the
semi-decidability is the introduction, in some cases, of false negatives that are
originated from the abstraction applied by unbounded entities. This does not
immediately imply that the model checking problem for Na``TL is partially

194 Chapter 5 – Dynamic References

Algorithm 3 Procedure for non-satisfiability of φ.

procedure NonSatisfiable(H, φ) do
Construct GH(φ);
Construct the set of self-fulfilling SCS ΠSCS having a prefixes and satis-
fying the accept condition on FH;
if ΠSCS = ∅ then

Output: “H does not satisfy φ”;
else

return G′ ∈ ΠSCS and its prefix as a (possible) counterexample;
end if

end procedure

decidable in itself. Some speculations on investigations we have lately un-
dertaken suggest that, by imposing some extra constraints on the notion of
fulfilling path, it could be possible to reduce the decidability of the Na``TL
model checking problem to deciding whether the run of the fulfilling path has
a non-empty language.

Let us be more precise. We have seen in the Appendix B.3 for the proofs of
the auxiliary lemmas of Proposition 5.7.25, that when comparing a path π =
A0λ0Aiλ1 · · · w.r.t. an allocation sequence σ, we have a notion of consistency
between the interpretation of the variables given in a valuations v ∈ Ai and the
concrete interpretation θσi on the concrete level12. This notion of consistency
given by Definition B.3.1 is local in a state. However, it can be strengthened so
that a path π tightly mimics the behaviour of an allocation sequence σ. This
strengthening should be done on two sides:

• requiring for every valuation of a formula Xψ in Ai (i > 0) the existence
of a valuation for ψ in Ai+1 with a consistent δi+1 w.r.t. the concrete
interpretation in the allocation sequence θσi+1;

• for every valuation of a formula ∃x:ψ in atom Ai, and all the possible

12This definition is given in Appendix B.3 because it is only used in the proofs. However,
for the sake of discussion we briefly report it here as well. Let γ ′ and γ be a concrete and
an abstract configuration, respectively. Let θ : fv(ψ) ⇀ Eγ′ be an interpretation for the

logical variables over γ′. We extend θ to the set of special logical variables E±
γ as follows.

Let h : γ′�−→γ and e ∈ Eγ , then:

θ±(x) = �� � θ(x) if x ∈ fv(ψ)
first(h−1(e)) if x = e−

last(h−1(e)) if x = e+

Definition B.3.1 Let h : γ′�−→γ be a morphism where Cγ′ = 1, (ψ,Θ, δ) a γ-valuation
and θ : LVar ⇀ Eγ′ . Then, (θ, h) is consistent with (Θ, δ) (written (θ, h) � (Θ, δ)) if

(a) h ◦ θ = Θ

(b) ∀x, y ∈ fv(ψ) ∪ E±
γ : δ(x, y) = min {dne | µn

γ′
◦ θ±(x) = θ±(y)} where min � = ⊥.

5.8 Related work 195

concrete assignments of x given by θσi there should be a valuation for ψ
in Ai with a consistent δi.

This strong form of consistency may be called global consistency. Global con-
sistency can be used to obtain a much stronger notion of fulfilling path. The
latter would probably allow us to reestablish the following fact that holds for
A``TL (cf. Proposition 4.5.16) but not for Na``TL in the current setting:

π fulfils φ ⇔ ∃(φ,Θ, δ) ∈ D0 (5.22)

where, π is a path in GH(φ) such that:

Gen(π) 6= ∅. (5.23)

Having (5.22) to our disposal would mean being able to decide whether or not φ
is satisfiable in H under the condition however that we are able to decide (5.23).
So far this question seems most likely to be undecidable13. Certainly more
investigation have be done in order to verify this last conjecture. Accordingly
the decidability of the HABA emptiness problem:

“given a HABA with referencesH and a ρ ∈ runs(H) is Gen(ρ) 6= ∅?”

is an important open question.

5.8 Related work

3-valued logic. In [100, 101], a framework for the generation of a family of
shape analysis algorithms is presented. The framework allows to reason about
pointer structures in case of destructive updates. This methodology can be
instantiated in different ways to handle different kind of data structures at dif-
ferent levels of precision and efficiency. The 3-valued logic methodology and
ours appear complementary in several aspects. The major differences with our
approach can be summarised as follows. In [101], states are represented by pred-
icates whereas our approach uses automata. Moreover, Na``TL provides some
second order capabilities given by the predicate leads-to. Both methodologies
produce only safe approximations of the concrete system that is modelled, false
negatives may be returned as result of the analysis. This phenomenon requires
some means to tune the abstraction, so that a more precise heap is obtained.
To this end, 3-valued logic technology uses instrumentation predicates. Every
predicate modifies the model (e.g., the operational semantics of the system)
and imposes the duty to prove the correctness of the new system with respect
to the original one. Our approach is instead parametric in the global constant
M . For the programming language it also depends on the constant L given to
define L-canonicity of the state. In order to increase the precision of the heap

13Indeed, if the problem is undecidable, there would be no real advantages of this new
setting w.r.t the current one.

196 Chapter 5 – Dynamic References

representation we only need to increase the two constants. The new model ob-
tained corresponds automatically to the original one thanks to the machinery
provided by morphisms and cardinalities. There is no need to establish the
equivalence of the two models. States in [101] are very abstract because of
the use of a single summary node and the approach is very general since no
restriction on the type of graph is imposed. We take the opposite point of view.
In our approach, we try to be more concrete by morphisms that exploit infor-
mation on the cardinality for entities and by keeping explicit singularities of
the heap. This should provide more precision in the analysis (i.e., less spurious
counterexamples) since the amount of nondeterminism is reduced. The price
we pay for such precision is a less general framework. It would be interesting
to study an integration of the two strategies.

[112] presents a model and an algorithm to prove safety properties of Java
objects and threads based on 3-valued logic. In this context, however, entities
of different states cannot be related. This problem is circumvented in the recent
paper [113] (again based on 3-valued logic) that uses reallocations similar to
those employed by HD-automata and by HABA without references defined
in Chapter 4. The paper proposes a first-order modal (temporal) logic for
allocation and deallocation of objects and threads as well as for the specification
of properties related to the evolution of the heap. The properties can be verified
by an abstract-interpretation algorithm, sound but not complete, that is also
defined in the paper.

Others. An intuitionistic extension of Hoare logic, called Separation Logic
for reasoning about shared mutable data structure in presented by Reynolds
in [94]. The logic introduces a special (conjunction) operator that allows to
describe the separation of storage into disjoint parts. It is possible therefore
to extend a local specification, involving only some variables and parts of the
heap, to a global specification involving also other parts of the heap. The main
strength of this approach is the capability to reason in a local fashion. The logic
can address several kinds of data structures like lists and trees. [67] provides
a classical model for the approach introduced by Reynolds, and the relation
w.r.t. the intuitionistic is investigated.

In [12] a store-less formalism for describing properties of linked data struc-
tures is defined. Moreover the paper introduces a logic, called Alias Logic,
for reasoning about destructive update performed on data structures. For it a
Hoare logic-like proof system is defined.

A spatial logic for reasoning about directed graphs is studied in [18]. The
logic is used for the analysis of the manipulation of such graphs that are de-
scribed by constructs of process algebra. An interesting feature of this logic is
the possibility to reason locally about disjoint subgraphs.

6

An application: analysis of

Mobile Ambients

6.1 Introduction

The calculus of Mobile Ambients (MA) is a calculus meant to model wide area
computations. Introduced firstly in [19], the ambient calculus has as a main
characteristic to allow active processes to move between different sites. This
notion of mobility that extends the one found in Java, where only passive code
can move, makes this formalism very appealing for modelling and studying
mobile computations.

A wide range of work has been recently carried out on the analysis of mobile
ambients [14, 40, 57, 75, 86], mostly based on static-analysis techniques and
abstract interpretation [37, 36]. The analysis defined in these papers provided
results on subsets of the ambient calculus with different levels of precision (for
example on processes with replication, see next section).

Taking inspiration from the aforementioned papers, in this chapter we in-
tend to apply the techniques developed in the previous chapters to analyse
mobile ambients by model checking. In fact, since the natural models of ambi-
ents are trees, HABA with references,Na``TL and its model checking algorithm
defined in Chapter 5 may become suitable tools — alternative to static analysis
— for the verification of mobile ambients. In particular, HABA define suitable
finite abstractions of mobile ambients processes; Na``TL can express interest-
ing security properties; and the model checking algorithm can be used to check

197

198 Chapter 6 – An application: analysis of Mobile Ambients

if the properties can be satisfied. In some cases, the accuracy of the analysis
may be tuned exploiting the machinery induced by unbounded entities.

This chapter is organised as follows: Section 6.2 provides some background
information on the ambient calculus, presenting its syntax and semantics. Sec-
tion 6.3 defines an operational semantics for MA using HABA with references.
Finally, in Section 6.4 we give an overview on other techniques known in the
literature used for the analysis of mobile ambients.

6.2 An Overview of Mobile Ambients

6.2.1 Syntax

We consider the pure Mobile Ambients calculus [19] without communication
primitives.

Definition 6.2.1. Let N be a denumerable set of names (ranged over by a,
b, n, m). The set of processes over N is defined according to the following
grammar:

N ::= (capabilities) P,Q ::= (processes)
in n enter n 0 inactivity
out n exit n (νn)P restriction
open n open n P | Q parallel composition

!P replication
n[P] ambient
N.P prefix.

For a process P we write n(P), fn(P), bn(P) for the set of names, free names
and bound names, respectively. In a process there can be multiple ambients
with the same name. The restriction (νn)P creates a new name called n that is
private in the scope of P . P | Q is the standard parallel composition of processes
P and Q. Replication !P represents an arbitrary number of copies of P and it is
used to introduce recursion as well as iteration. n[P] represents an ambient with
name n enclosing a running process P . Ambients can be arbitrarily nested, and
a graphical representation of an ambient n enclosing ambients m1, . . . ,mi and
executing process P1| · · · |Pj is depicted in Figure 6.1(a). Capabilities provide
ambients with the possibility to interact with other ambients. In particular,
inn has the effect to move the ambient that performs inn into a sibling ambient
called n (if there exists one). Figure 6.1(b) gives a pictorial representation of
the execution of in . Symmetrically, by outn an ambient nested inside n, moves
outside (cf. Figure 6.1(c)). Finally, openn dissolves an ambient n nested inside
the one performing this capability (cf. Figure 6.1(d)).

6.2 An Overview of Mobile Ambients 199

· · · · · ·P1| · · · |Pj

n

m1 mi

| · · · |

(a) Ambient

n[P1| · · · |Pj |m1[· · ·]| · · · |mi[· · ·]].

inm.P |R

n

|QP |R

n

m

m

Q

(b) Reduction for n[inm.P |R]|m[R].

outm.P |R |Q

n

m

P |R Q

mn

(c) Reduction for m[n[outm.P |R]|R].

Q P |Q

m

openm.P

(d) Reduction for openm.P |m[Q].

Figure 6.1: Graphical representation of nested ambients and reduction rules
for capabilities.

6.2.2 Operational semantics

The standard semantics of Mobile Ambients is given in [19] on the basis of
a structural congruence between processes (denoted by ≡) and a reduction
relation. Structural congruence provides us with a partitioning of processes into
equivalence classes (of structurally congruent processes) within which processes
are equivalent up to syntactic restructuring. Table 6.2.2 defines the structural
congruence. Moreover, processes are identified up to α-conversion, i.e.,

(νn)P = (νm)P{m/n} if m /∈ fn(P) (6.1)

The previous two processes are considered to be identical. This allows us to
choose different appropriate representations of the same process.

It is worth to note that:

n[P]|n[Q] ≡/ n[P |Q] (6.2)

that is, multiple copies of an ambient n have distinct identities. Moreover,

!(νn)P ≡/ (νn)!P (6.3)

that is, the replication operator combined with restriction creates an infinite
number of new names. This is exemplified as follows.

Example 6.2.2. Let P1 =!(νn)(n[in n]) and P2 = (νn)!(n[in n]). Process P1

creates an unbounded number of new local names, i.e., it expands as:

n′[in n′]|n′′[in n′′]|n′′′[in n′′′]| · · ·

200 Chapter 6 – An application: analysis of Mobile Ambients

P ≡ P (Struct Refl)
P ≡ Q ⇒ Q ≡ P (Struct Symm)
P ≡ Q ∧Q ≡ R ⇒ P ≡ R (Struc Trans)

P ≡ Q ⇒ (νn)P ≡ (νn)Q (Struct Res)
P ≡ Q ⇒ P |R ≡ Q|R (Struct Par)
P ≡ Q ⇒ !P ≡!Q (Struct Repl)
P ≡ Q ⇒ n[P] ≡ n[Q] (Struct Amb)
P ≡ Q ⇒ M.P ≡M.Q (Struct Amb)

P |Q ≡ Q|P (Struct Par Comm)
(P |Q)|R ≡ P |(Q|R) (Struct Par Assoc)
!P ≡ P |!P (Struct Repl Par)
(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)
(νn)P |Q ≡ P |(νn)Q if n /∈ fn(P) (Struct Res Par)
(νn)m[P] ≡ m[(νn)P] if n 6= m (Struct Res Amb)

P |0 ≡ P (Struct Zero Par)
(νn)0 ≡ 0 (Struct Zero Res)
!0 ≡ 0 (Struct Zero Repl)

Table 6.1: Structural Congruence for Mobile ambients.

where n′, n′′, n′′′, . . . cannot interact with each other since these names are
local. Hence, P1 cannot perform any action. On the contrary, P2 expands as

n[in n]|n[in n]|n[in n]| · · ·

that is, an infinite number of copies of the same ambient n is created. Every
copy can interact with any other one. Hence, in P2 the instances of n can move,
producing thus, every kind of possible nesting.

The analysis later in this chapter adopts some simplifications on processes,
in particular on those of the form !(νn)P .

The reduction relation → is defined by the rules listed in Table 6.2.2. The
first three rules define the effect of capabilities in one step-reductions. The
reduction is then propagated within name restriction, ambient nesting, and
parallel composition by the next three rules that, for this reason, are called
structural rules. The last rule allows the use of structural congruence during
reduction. As usual, →∗ stands for the reflexive and transitive closure of →.

6.3 An analysis oriented semantics with HABA

We give an abstract semantics for the calculus introduced in Definition 6.2.1
that captures essential information useful for proving security properties. The

6.3 An analysis oriented semantics with HABA 201

n[inm.P |Q]|m[R] → m[n[P |Q]|R] (Red In)

m[n[outm.P |Q]|R] → n[P |Q]|m[R] (Red Out)

open n.P |n[Q] → P |Q (Red Open)

P → Q

(νn)P → (νn)Q
(Red Res)

P → Q

n[P] → n[Q]
(Red Amb)

P → Q

P |R → Q|R
(Red Par)

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′ (Red ≡)

Table 6.2: Reduction rules for Mobile ambients.

information we try to retrieve are along the line of [40, 57, 75, 86]. We start
with some motivating examples.

6.3.1 Motivating examples

Mobile ambients are used to model wide area systems. In such systems, se-
curity is an important issue since trustworthy ambients may operate inside
and together with untrustworthy ambients. Malicious ambients can acquire
information contained in other ambients by opening them. Properties such as
secrecy of data are preserved if no untrustworthy ambient can ever open a
trustworthy one.

Example 6.3.1. In [40] the following system is considered. Ambient m wants
to send a message to ambient b. Messages are delivered by enclosing them in a
wrapper ambient that moves inside the receiver which acquires the information
by opening it. For secret messages we want to be sure that they can be opened
only by the receiver b.

SYS1 = m[mail [outm.in b.msg [out mail .D]]] | b[open msg] | open msg .

Figure 6.2 shows a pictorial view of the initial configuration of SYS 1. Data D is
secret, mail is the pilot ambient that goes out of m to reach b. The outer-most
ambient, which we denote by @, attempts to access the secret by an openmsg .
Once inside b, the wrapper mail is opened and b reads the secret D. For the
process SY S1 we want to guarantee that

202 Chapter 6 – An application: analysis of Mobile Ambients

mail

bm

openmsg

openmsg

outm.in b.msg[outmail.D]

@

Figure 6.2: Initial configuration of SYS 1.

(UA) no untrusted ambients can access D.

Example 6.3.2. The following example was presented in [14] where multi-
level security for Mobile Ambients is investigated. Boundary ambients are
introduced to protect high-level information. The restriction is that high-level
data must be contained either in boundary ambients or in low level ambients
not escaping boundaries. The authors consider the following system:

SYS2 = m[send [outm.in b | hdata [in filter]]] |
b[open send] | filter [in send] | open filter .

Boundary ambients are b and send . The security property we want this system
to satisfy is:

(BA) hdata is always within boundary ambients or if hdata is within
the low level ambient filter then filter is in a boundary ambient.

In the following, we want to develop finite-state models for mobile ambients
in order to verify properties such as (UA) and (BA) by model checking.

6.3.2 HABA modelling approach

Modelling issues. In modelling mobile ambients by HABA (with references)
we want to exploit cardinalities of entities in order to code multiple instances
of the same ambient. However, there are some issues related with the use of
unbounded entities and with the possibility to express properties about sys-
tems.

• Since unbounded entities impose restrictions on reallocations from state
to state (see Definition 5.3.12), we should make sure that our model
conforms with the definition of reallocation. For example, unbounded
entities cannot be fresh, therefore they must alway be in the codomain
of the reallocation.

6.3 An analysis oriented semantics with HABA 203

• Due to replication, any ambient can have an unbounded number of copies.
In Na``TL we need some mechanism to distinguish among those differ-
ent instances so that given a certain entity it is clear which copy of the
ambient it stand for.

As a possible solution we propose the following model developed in this section.

Basic idea of the model. Along the line of [40, 57, 75, 86], the essential
information we want to retrieve from a mobile ambient process P is:

which ambients may end up in which other ambient

To model the structure of a process P we introduce a classification among the
entities in use. For any ambient a occurring in P we have:

• a special entity ho(a) (called a’s host) that is used to record, at any point
in the computation, the ambients (hosted) inside any copy of ambient a.
It is fixed, i.e., during the computation its position within the topology
of the process does not change.

• A concrete entity, say e, distinct from ho(a), that is used to represent an
instance of the ambient a that executes capabilities. e moves according
to the capabilities of that particular copy of a. The association between
e and a will be clarified below. If there exist several instances of a,
some of them may be represented by multiple/unbounded entities (again
distinct from ho(a)). Before one single instance among those represented
by multiple/unbounded entity performs a capability it is extracted. This
is somehow similar to the semantics of !Q which cannot be reduced until
it has been expanded to Q |!Q.

Example 6.3.3. Figure 6.3(a) shows a possible state of a process. Fig-
ure 6.3(b) depicts how this process is represented in our model. In this case
we have three different ambients a, b and n. Outgoing references define the
son/father relation µ. Notation e:n says that e denotes an ambient with name
n. The host ho(a) keeps track of the ambients contained in any copy of an
ambient a. Thus we have a copy of n contained in a because e1 is concrete and
more than M copies of the ambient b because e2 is unbounded1. Ambient b
does not contain any other ambients since ho(b) does not have incoming refer-
ences; and n contains another copy of b. Hosts entities are depicted as squares
in order to distinguish them from entities that can move around during the
computation (depicted as circles). Figure 6.4 shows the state resulting after e1

has executed the capability in b. This configuration detects that n is contained
in a copy of ambient b although we do not distinguish which one.

1Here, the parameter M has the same as in Chapter 5.

204 Chapter 6 – An application: analysis of Mobile Ambients

@

· · ·

a

n bb b

b

b

(a) Conceptual configuration.

e4 : a

ho(@)

e1 : n e2 : b

ho(a)

e3 : b

ho(n)ho(b)

(b) Representation as a HABA config-
uration.

Figure 6.3: Example of ambient process and its coding.

@

· · ·

a

n bb b

b

b

(a) Conceptual configuration.

e3 : b

ho(n)

e1 : n

ho(b)

e2 : b

ho(a)

e4 : a

ho(@)

(b) Representation as a HABA config-
uration.

Figure 6.4: The model of Fig 6.3 after e1:n has executed in b.

6.3 An analysis oriented semantics with HABA 205

6.3.3 Process indexing

First of all we assume that the names occurring bound inside restriction are all
distinct from each other and from the free names. This can always be done by
α-conversion.

In order to achieve a more precise analysis we label the ambients occurring
in the process P by distinguished indexes. Let J be a countable set of indexes
and Ñ = {nj | n ∈ N , j ∈ J} be the set of indexed names. A indexed process

P̃ is a process such that if n[Q] occurs in P̃ then n ∈ Ñ . Let noi(P) : Proc→
Proc be function that given an indexed process P̃ , returns the (non-indexed)
process P obtained from P̃ by stripping out every index from the ambient
names occurring in P̃ . The process P̃ is an indexed version of P , if noi(P̃) = P .
Moreover, idx (P̃) = {j ∈ J | nj occurs in P̃} is the set of indexes occurring in

P̃ . We need a notion of well-indexing for processes that is introduced by the
following definition.

Definition 6.3.4. Process P̃ is well-indexed if and only if

• P = 0;

• P = ni[Q] and Q is well-indexed and i /∈ idx (Q);

• P = Q | Q′, and Q,Q′ are well-indexed and idx (Q) ∩ idx (Q′) = ∅;

• P =!Q and Q is well-indexed;

• P = M.Q and Q is well-indexed;

• P = (νn)Q and Q is well-indexed.

Note that indexed names neither occur in capabilities, nor in name restriction.

Example 6.3.5. Let
P = a[in b.a[out b]] | b[0].

A well-indexed instance of P is

P̃ = a1[in b.a2[out b]] | b3[0].

We use indexing in order to distinguish between copies of identically named
ambients that have different behaviour as for example the two instances of a.
For simplicity (without loss of generality) we assume that process indexing is
done always after α-conversion.

In the following we assume that every process has been well-indexed. This
can be considered as a preprocessing step before the extraction of the model.

206 Chapter 6 – An application: analysis of Mobile Ambients

6.3.4 Preliminary notation

We assume the existence of a global function that associate to every entities e
a name of the ambients in well-indexed process P̃ represented by e.

A : Ent → n(P̃) (6.4)

The function A provides a partitioning of Ent . For e ∈ Ent , we write e:n as a
shorthand for A(e) = n. In the following we often make use of this notation in
some contexts if it is necessary to know the ambient of an entity. For example,
in a function with parameter e, we write f(e:a) if it is essentially to know that e
represents a copy of the ambient a. Moreover, we write e:a ∈ E is a shorthand
for e ∈ E ∧ A(e) = a.

We consider two special sets of entities E is
n(P) ∩ E

ho
n(P) = ∅; where:

• entities E is
n(P) = {is(n) ∈ Ent | n ∈ n(P)} are used for two purposes:

– first of all to model ambient names. They are the corresponding
of the special entities PV used for program variables in Chapter 5.
In Na``TL we will have special variables xn whose interpretation is
is(n) and therefore we can easily refer to ambient n by xn.a.

– Secondly, for any ambient n ∈ n(P), is(n) is the inactive site of n
(from which the name is), i.e., the repository where the copies of
n are placed when this ambient is inactive. Informally speaking,
inactive means that n cannot execute any action and it is not yet
visible to other ambients (a complete exposition of this concept is
postponed till Section 6.3.7).

An entity is(n) does not move and we assume A(is(n)) = n.

• Eho
n(P) = {ho(n) | is(n) ∈ n(P)}, is a set of special host entities. We as-

sume A(ho(n)) = n. In every state of the model and for every ambient n
we have is(n) point to ho(n).

Note that for a indexed process P̃ , in E is
n(P̃)

there exist distinct instances of

is(ni), is(nj) and ho(nj), ho(nj) where i 6= j for different occurrences of the
ambient n in P . Every HABA state considered in this chapter for modelling
mobile ambients is of the form:

q = 〈γ,P〉.

The first component γ = (E, µ, C) ∈ Conf is the standard configuration of
HABA states (with references) as defined in Definition 5.3.21. This implies
that much of the notation used in Chapter 5 is reused here, as for example
the constant M denoting the upper bound on the precision of the cardinality
function C. For γ we write Efix for its set of fixed entities Efix = E ∩ (Eho

n(P) ∪

6.3 An analysis oriented semantics with HABA 207

�L�L��L�L� L L L L ¡L¡¡L¡¢L¢¢L¢£L£L££L£L£¤L¤L¤¤L¤L¤ ¥L¥¥L¥¦L¦¦L¦

e2 : be1 : n

is(a) is(b)

ho(a) ho(b)

e4 : a

is(@)

ho(@)

in b.0
e3 : b

is(n)

ho(n)

Figure 6.5: HABA state representation for the model of Fig 6.3(b) with entities
modelling inactive sites processes to be executed.

E is
n(P)) and Ec for its set of entities representing the copies of ambients that

can move, i.e., Ec = E\Efix. The second component P has type

P : Ent ⇀ 2Proc

and is introduced for the special case of mobile ambients. P(e) associates to
the entity e the set of processes that e must execute.

Example 6.3.6. The typical state we obtain using the previous sets of special
entities and the component P is depicted in Figure 6.5. The set P(e) is written
close to e. We do not write it if it is only the empty process. For example, entity
e1 has to execute {in b.0}, whereas the other entity only {0}. The inactive sites
are always depicted as patterned square in order to distinguish them from host
entities.

6.3.5 Pre-initial and initial state: an overview

Pre-initial state. We have already discussed that one of the problem in
modelling mobile ambients (in HABA) is how to specify that a particular entity
e represents an ambient n and if there are more than one instance of n how to
distinguish among these instances: the global function A(e) = n cannot be used
in Na``TL. The purpose of the pre-initial state is to address this problem. The
pre-initial state is a special state we add to the model with the aim to identify
for every entity which ambient it represents. The pre-initial state of a process
P is built in such a way that every entity representing a copy of the ambient
n leads to the inactive site is(n) ∈ E is

n(P). The structure of the graph does not
reflect the initial topology described by P . When we specify formulae in the
logic we will exploit the fact that an entity e in the pre-initial state leads to
is(n) to express the fact that e is an entity representing a copy of the ambient
n.

Example 6.3.7. Figure 6.6 depicts the pre-initial state of the process SYS 1

in Example 6.3.1. The important point to note for the moment in this figure

208 Chapter 6 – An application: analysis of Mobile Ambients

§L§L§§L§L§§L§L§¨L¨L¨¨L¨L¨¨L¨L¨©L©©L©©L©ªLªªLªªLª«L««L««L«¬L¬¬L¬¬L¬ LLL®L®®L®®L® ¯L¯L¯¯L¯L¯¯L¯L¯°L°L°°L°L°°L°L°
ho(msg)

outm.in b.msg[out mail .D]open msg

ho(b)

e2 : b

is(b) is(mail)

ho(mail)

e3 : maile4 : msg

is(@)

ho(@)

is(m)

ho(m)

e1 : m

out mail.D

is(msg)

Figure 6.6: Pre-initial state of the process SYS 1 of Example 6.3.1.

is that every copy of an ambient leads to the corresponding entity in E is
n(P).

For example e1 that stands for m leads to is(m). Although e1 has the label m
(i.e., A(e1) = m), this information cannot be exploited in the logic. However,
in Na``TL we can refer to is(m). Hence, due to the pre-initial state, we can
use the formula ∃x : x xm in order to identify x as an copy representing the
ambient m.

Example 6.3.8. The security property (UA) of Example 6.3.1 is violated if
and only if the following Na``TL formula is satisfied

φ ≡ ∃x : x xmsg ∧ F(x / xmsg ∧ x.a 6= mail ∧ x.a 6= b).

As usual, mail is a shorthand for xmail .a and b for xb.a. φ states that msg
eventually will be included inside an ambient different from mail and b (which
are the only trustworthy ones) violating therefore the security property (UA).
The property (BA) of Example 6.3.2 is violated if and only if:

ψ ≡ ∃x : x xhdata ∧ ∃y : y xfilter ∧ F(x / xhdata x.a 6= send ∧

x.a 6= b ∧ (x.a = filter ⇒ y / xfilter ∧ y.a 6= b ∧ y.a 6= send))

where send ≡ xsend .a, b ≡ xb.a and filter ≡ xfilter .a. ψ states that eventually
hdata escapes the boundary ambients b and send , and if it is inside filter this
is not protected by one of the two boundaries.

Hence, if HSYS1
and HSYS2

are the HABA modelling SYS1 and SYS2, the
security properties are guaranteed to hold if we verify

HSYS1
2 φ and HSYS2

2 ψ.

That can be checked using the model checking algorithm defined in Chapter 5.

Initial state. The pre-initial state does not reflect the initial topology defined
by the process P . This is done by the initial-state whose purpose is in fact to
model the son/father relation described by the process in terms of entities and
references between them. For example, Figure 6.7 shows the initial state of the
process SYS1 of Example 6.3.1. Ambients m and b are inside the outer-most

6.3 An analysis oriented semantics with HABA 209

±L±±L±²L²²L²³L³³L³³L³´L´´L´´L´ µLµLµµLµLµµLµLµ¶L¶L¶¶L¶L¶¶L¶L¶ ·L·L··L·L··L·L·¸L¸L¸¸L¸L¸¸L¸L¸ ¹L¹¹L¹¹L¹ºLººLººLº ho(msg)

e4 : msg
out mail.D

is(mail) ho(mail)

open msg

is(@) ho(@)

e1 : m e2 : b

open msg

outm.in b.msg[out mail.D]

is(msg)

e3 : mail

is(m) ho(m) is(b) ho(b)

Figure 6.7: Initial state of the process SYS 1 of Example 6.3.1.

ambient @, whereas mail is inside m. Ambients b and mail are empty. is(msg),
ho(msg) and e4 maintain the same pointer structure as the pre-initial state
since in the beginning ambient msg cannot execute any action (we say that it
is inactive). In fact in SYS1, msg is guarded by out m.in b (cf. the process
to be executed by e3:mail in Figure 6.7 or see the definition of SYS 1). Only
when both out m and in b have been consumed msg is enabled to execute its
actions (it becomes active). In a HABA state we model inactive ambients by
letting the copies of the ambient lead to the their inactive site. Only if an
ambient is inactive its inactive site has some entity leading to it. Apart from
the outer-most ambient @, in the pre-initial state every ambient is inactive by
definition (cf. Figure 6.6). The formal, definition of active, and inactive are
postponed till Section 6.3.7. Finally, note that the ambient @ does not have
a real instance (it is modelled only by is(@) and ho(@)), therefore we delegate
is(@) the execution of open and !.

6.3.6 On morphisms and canonical form for mobile ambients

In Chapter 5, where we have defined the symbolic operational semantics of Ln,
we introduced the notion of canonical form for HABA configurations. In this
chapter, we reuse that concept and show that it is suitable also for the case of
mobile ambients.

Assumption on morphisms. The employment of E is
n(P) for the same pur-

pose of the program variables PV in Chapter 5 entails the same kind of assump-
tions on morphisms and reallocations. In particular, throughout this chapter
we consider only morphisms that satisfy the following conditions:

γ1�−
h−→γ2 ⇒ h �E is

n(P) = idEis
n(P)

(6.5)

γ1 =
λ
� γ2 ⇒ ∀e ∈ E is

n(P) : λ(e, e) = 1 (6.6)

q�−h−→q′ ⇒ ∀e ∈ Eγq : (Pq(e) = Pq′(h(e)) ∧ A(e) = A(h(e))) (6.7)

Conditions (6.5) and (6.6) correspond to those applied in Chapter 5. They
force the correspondence of the program variables in configurations related by

210 Chapter 6 – An application: analysis of Mobile Ambients

morphisms or reallocations. Condition (6.7) is typical for the ambient calculus
and simply forces morphisms to map an entity e only onto another entity e′

representing the same ambient and executing the same process.
The notions of L-safety, L-compactness and canonical form developed in

Chapter 5 can be adapted for Mobile Ambients in a straightforward manner.

Definition 6.3.9 (L-safety for MA). Let L > 0. A configuration γ with
Eho
n(P) ⊆ Eγ is L-safe if

∀e ∈ Eho
n(P) : (∀e′ : d(e′, e) 6 L⇒ Cγ(e

′) = 1).

Definition 6.3.10 (L-compactness for MA). Let L > 0. A configuration
γ with Eho

n(P) ⊆ Eγ is L-compact if

∀e ∈ Eγ : (indegree(e) > 1 ∨ ∃e′ ∈ Eho
n(P) : d(e, e′) 6 L+ 1).

The only difference with the L-safety and L-compactness of Chapter 5 is
that here we consider the distance between a generic entity and a host one
whereas there we regarded the distance from a program variable to a generic
entity.

Definition 6.3.11 (canonical form for MA). A configuration γ is L-
canonical (or in L-normal form) if γ is L-safe and γ is L-compact.

As we have seen in Chapter 5, using only states in canonical form has a
double advantage: on the one hand, it is possible to determine precisely which
entities are involved in a pointer update; on the other hand, as we will see, the
canonical form helps to obtained a finite-state HABA.

Dealing with multiple instances of an ambient. We represent multiple
copies of the same ambient by multiple/unbounded entities. Due to canonical
form, multiple/unbounded entities are not direct children of hosts: there are L
concrete entities in between. However, both the multiple/unbounded entity and
the preceding concrete entities represent different copies of the same ambient.
Hence, all these entities are assumed to be at the same level, i.e., inside the
same ambient. This is according to our initial aim to collect information about
what is contained at top level for every ambient whereas we do not care about
inner levels. With this model we are able to distinguish that inside an ambient,
say a, there are no instance of the ambient b; or there are precisely i instances of
b with 1 ≤ i ≤ L+M ; or there are more than L+M instances of b where L and
M are the usual parameters that properly tuned can be exploited to accomplish
a more precise model. Furthermore, the use of canonical form ensures that the
model is always finite.

Example 6.3.12. Assuming M = 1, in the ambient a depicted in Figure 6.8,
there are exactly two instances of the ambient n and any number of copies
strictly greater than 4 of the ambient b. Between copies of the same ambient,
we depicted dashed horizontal arrows to stress that, at the conceptual level,
these arrows do not describe a son/father relation as the solid vertical ones.

6.3 An analysis oriented semantics with HABA 211

»L»L»»L»L»»L»L»¼L¼L¼¼L¼L¼¼L¼L¼½L½L½½L½L½½L½L½¾L¾L¾¾L¾L¾¾L¾L¾ ¿L¿L¿¿L¿L¿¿L¿L¿ÀLÀLÀÀLÀLÀÀLÀLÀ

e3 : n

ho(a)

e4 : b e5 : b e6 : b e7 : b

ho(n)

e1 : b e2 : n

is(n) is(a)

ho(b)

is(b)

Figure 6.8: Representing multiple instances of the same ambient.

6.3.7 Coding processes into HABA configurations

In this section we define a function that given a process P codes it into a HABA
state, i.e., it returns:

• a configuration γ that model the ambients topology delineated by P ;

• a function P that associates to every entity in the configuration the set
of capabilities it must perform.

For doing this, we first need few auxiliary definitions.

Configuration union. For a configuration γ, let `aγ(e) be the longest pure
chain of a copies in γ leading to (and including) e. That is

`aγ(e) = {e′ ∈ Ec
γ | A(e′) = a, e ∈ µ∗(e′)} ∪ {e} (6.8)

For example in Figure 6.8, we have `nγ(ho(a)) = {e2, e3, ho(a)} and `bγ(ho(a)) =
{e7, e6, e5, e4, ho(a)} and `nγ (ho(b)) = {e1, ho(b)}.

For configurations γ, γ ′ with distinct sets of non-fixed entities and with
equal pointer structure as well as cardinality function over common entities,
i.e., such that:

Ec
γ ∩ E

c
γ′ = ∅

Cγ � (Eγ ∩Eγ′) = Cγ′

µγ � (Eγ ∩Eγ′) = µγ′

we define the union configuration γ] γ ′ = (E, µ, C) where:

E = Eγ ∪ Eγ′

µ(e) =

µγ(e) if e ∈ Eγ
µγ′(e) if e ∈ Efix

γ′

first(`aγ(µγ′(e))) if e:a ∈ Ec
γ′ ∧ µγ′(e) ∈ Eho

γ′

µγ′(e) otherwise

C(e) =

{
Cγ(e) if e ∈ Eγ
Cγ′(e) if e ∈ Eγ′\Eγ

212 Chapter 6 – An application: analysis of Mobile Ambients

ÁÂÁÂÁÁÂÁÂÁÃÂÃÂÃÃÂÃÂÃ

ÄÂÄÄÂÄÅÂÅÅÂÅ ÆÂÆÂÆÆÂÆÂÆÇÂÇÇÂÇ

ÈÂÈÈÂÈÉÂÉÉÂÉ

ÊÂÊÂÊÊÂÊÂÊËÂËËÂË

ÌÂÌÌÂÌÍÂÍÍÂÍ

ÎÂÎÂÎÎÂÎÂÎÏÂÏÂÏÏÂÏÂÏÐÂÐÐÂÐÑÂÑÑÂÑ

ÒÂÒÂÒÒÂÒÂÒÓÂÓÂÓÓÂÓÂÓ

ÔÂÔÂÔÔÂÔÂÔÕÂÕÂÕÕÂÕÂÕ

ho(b)

is(b)

e3 : n e4 : b e5 : be2 : n

ho(a)

is(a)

ho(a)

is(a)

ho(a)

is(a)

ho(a)

is(a)

=

=

=

is(n)

γ1 γ2

]

γ3 γ4

e3 : ne2 : n

γ5 γ6

]

]

ho(n)

e1 : b

γ1 ∪ γ2

ho(n)

e1 : b

is(n)

ho(b)

is(b)

e6 : b e7 : b

e6 : b e7 : b

e6 : b e7 : b

e6 : b e7 : be3 : ne2 : n

γ5 ∪ γ6

ho(a)

is(a)

γ3 ∪ γ4

e3 : n e4 : b e5 : be2 : n

ho(a)

is(a)

Figure 6.9: Example of configuration unions.

The definition of E is straightforward. C is well defined since Cγ and Cγ′ are
equal on the intersection of their domains. For e:a ∈ Eγ′ , µ(e) assign the first
entity in the queue of copies of a.

Example 6.3.13. Some examples of configuration unions are depicted in Fig-
ure 6.9. If both configurations have copies of an ambient, say b, inside the same
ambient, say a, the union appends the copies of the second configuration to
those of the first one. In the figure, this is exemplified in γ3] γ4.

To accomplish union of states we need also to define a notion of union for
the component P of the state. This is done point-wise as follows: let q = 〈γ,P〉
and q′ = 〈γ′,P′〉 be two states and e ∈ Eγ ∪ Eγ′ , then

(P] P′)(e) =

P(e) ∪ P′(e) if e ∈ Eγ ∩ Eγ′

P(e) if e ∈ Eγ\Eγ′

P′(e) if e ∈ Eγ′\Eγ

(6.9)

6.3 An analysis oriented semantics with HABA 213

and finally we can easily define the union for states component-wise:

〈γ,P〉] 〈γ′,P′〉 = 〈γ] γ′,P] P′〉 (6.10)

Subprocesses executed by ambients. In order to construct the compo-
nent P of the state we need the following function ρ : Proc→ 2Proc that given
a process P returns the set of sub-processes that the ambient containing P
must execute. It is defined by:

ρ(0) = ∅ ρ(M.Q) = {M.Q}
ρ(Q | Q′) = ρ(Q) ∪ ρ(Q′) ρ(m[Q]) = ∅
ρ(!Q) = {!Q} ρ((νn)Q) = ρ(Q)

By by the previous definition, processes belonging to nested ambients are not
returned. Note that because of the assumption on the bound names we can
delete restriction.

Example 6.3.14. Consider our running example SYS 1. We have:

ρ(outm.in b.msg [out mail .D]) = {outm.in b.msg [out mail .D])}

This will be used to define the process that must be executed by the entity
representing the copy of mail . Moreover, since the ambient m contains only
mail [outm.in b.msg [out mail .D]]) the copy of m does not execute anything, in
fact ρ(mail [outm.in b.msg [out mail .D]]) = ∅.

Enabled ambients. An enabled ambient is an ambient which is ready to
perform some action. enab(P) denotes the set of all enabled ambients in P . It
is defined as:

enab(0) = ∅ enab(M .Q) = ∅
enab(Q | Q ′) = enab(Q) ∪ enab(Q ′) enab(a[Q]) = {a} ∪ enab(Q)
enab(!Q) = enab(Q) enab((νn)Q) = enab(Q).

Example 6.3.15. Consider SYS1 of Example 6.3.1. The set enab(SYS 1) =
{m,mail , b}. Note that ambient msg is not enabled (yet).

The classification of enabled and non-enabled ambients entails a correspond-
ing representation on the HABA configurations that represents the process. We
have already anticipated that in the model we classify an ambient a according
to the existence of entities leading to the inactive site. Therefore, in the model
we have the following (semantical) notion that corresponds to (the syntactic
one of) being enabled.

Definition 6.3.16. In state q, the ambient n is active if @e ∈ Eγq : e ≺γq is(n).

If n is not active it is called inactive. The operational rules use this notion
in order to distinguish between ambients that may perform a capability from
those that cannot.

214 Chapter 6 – An application: analysis of Mobile Ambients

ÖLÖLÖÖLÖLÖ×L×L××L×L×
ho(a)
0

is(a)
0

11

ε(a)

Figure 6.10: Graphical representation of ε(a).

The very basic building block for the construction of the state is the rep-
resentation of that (sub)part related to the fixed entities of an ambient a, i.e.,
is(a), ho(a). Let a ∈ n(P):2

ε(a) = 〈{ho(a), is(a)}, {(is(a), ho(a))},1{is(a),ho(a)}, {(ho(a),0), (is(a),0)}〉

ε(a) indicates the empty (fixed) state for ambient a and its graphical represen-
tation is shown in Figure 6.10. The function Ω(a, P, k, act) returns a HABA
state representing the process P contained inside the ambient a. The param-
eter k is used for dealing with cardinalities. The parameter act is a boolean
that instructs Ω to construct the P configuration with the active or with the
inactive representation of its ambients.

Formally, Ω : N ×Proc×M∗ × B→ Conf× (Ent → 2Proc) is given by:

Ω(a,0, k, act) = ε(a)

Ω(a,m[Q], k, act) = ε(a)] Ω(m,Q, k, act)

]

〈{e, ho(a)}, {(e, ho(a))}, {(e, k), (ho(a), 1)},
{(e, ρ(Q)), (ho(a),0)}〉 if act

〈{e, is(m)}, {(e, is(m))}, {(e, k), (is(m), 1)},
{(e, ρ(Q)), (is(m),0)}〉 otherwise

where e:m is fresh

Ω(a,Q1|Q2, k, act) = Ω(a,Q1, k, act)] Ω(a,Q2, k, act)

where Ec
γΩ(a,Q1,k,act)

∩ Ec
γΩ(a,Q2,k,act)

= ∅

Ω(a, (νn)Q, k, act) = Ω(a,Q, k, act)

Ω(a, !Q, k, act) = Ω(a,Q, ∗, act)

Ω(a,N.Q, k, act) = ε(a)] Ω(a,Q, k,ff)

The representation of the empty process inside a is given by the empty active
state for a. The representation of m[Q] in a comprehends the empty state
for a, the sub-state of Q inside m and a configuration with a non fixed entity

2From now on when convenient we write a state as a four tuple 〈E, µ,C,P〉, where it is
clear that the first three correspond to the configuration. Moreover, in this case, we write
functions as set of pairs, i.e., (e, f(e)) for f(e) = e′.

6.3 An analysis oriented semantics with HABA 215

e standing for the copy of m in a. Depending from the parameter act, this
representation can be either the active or the inactive one. Fixed entities have
always cardinality 1, whereas entities representing copies, like e, are concrete if
their ambient does not occur within the scope of replication. This is recorded
in the parameter k which is assigned to e as cardinality. Moreover e has asso-
ciated the set of capabilities ρ(Q) to be executed. The representation of Q1|Q2

is given by the union of the representation of Q1 and Q2. When encountered,
Ω(a, !Q, k) makes a recursive call changing the cardinality from k to ∗ This as-
signs cardinality ∗ to every non-fixed entity within the scope Ω(a,Q, ∗). Finally,
the representation of N.Q inside a has the empty state for a and the inactive
representation for the process Q — which since guarded by N contains only
non-enabled ambients. Therefore the recursive call Ω(a,Q, k,ff) is done with
the explicit value act = ff.

Lemma 6.3.17. For all m ∈ n(P) and Q subprocess of P : if Ω(m,Q, k, tt) =
〈γ,P〉 then m is active.

Proof. Straightforward by induction of the structure of Q.

Lemma 6.3.18. For every process P ,

a ∈ enab(P) ⇒ a is active in Ω(@, P, 1, tt).

Proof. Straightforward by induction of the structure of P and by the previous
lemma.

Example 6.3.19. Figure 6.11 shows the HABA state representation for

Ω(@, b[open msg], 1.tt)

as well as
Ω(@,m[mail [outm.in b.msg [out mail .D]]], 1, tt).

In the latter, note the different representation between active ambients (@, m,
mail) and inactive (msg). Composing the two states (by the union operation)
together with Ω(@, open msg , 1, tt) we obtain:

Ω(@, b[open msg], 1, tt)] Ω(@, open msg , 1, tt)]

Ω(@,m[mail [outm.in b.msg [out mail .D]]], 1, tt) = Ω(@,SYS 1, 1, tt).

The state Ω(@,SYS1, 1, tt) is depicted in Figure 6.73.

Example 6.3.20. Figure 6.12 contains an example state in case of replication.
By definition we have Ω(@, !n[in n], 1, tt) = Ω(@, n[in n], ∗, tt) therefore, the
entity e2 modelling the copies of n, becomes unbounded.

3Except for the capability of is(@) that is be dealt with in a special way, see Defini-
tion 6.3.21.

216 Chapter 6 – An application: analysis of Mobile Ambients

ØLØLØØLØLØÙLÙLÙÙLÙLÙ ÚLÚÚLÚÛLÛÛLÛ

ÜLÜLÜÜLÜLÜÝLÝLÝÝLÝLÝÞLÞLÞÞLÞLÞÞLÞLÞßLßLßßLßLßßLßLß àLààLààLàáLááLááLá âLââLââLâãLããLããLã

outm.in b.msg[out mail .D]

is(@) ho(@)

e2 : b

open msg

is(b) ho(b)

is(m) ho(m)

Ω(@, b[open msg], 1, tt)

Ω(@,m[mail [outm.in b.msg [out mail .D]]], 1, tt)

e3 : mail

is(@) ho(@)

e1 : m

is(mail) ho(mail)

e4 : msg
out mail.D

is(msg) ho(msg)

Figure 6.11: HABA states (up to isomorphism) returned by
Ω(@, b[open msg], 1, tt) and Ω(@,m[mail [outm.in b.msg [out mail .D]]], 1, tt).

äLääLääLäåLååLååLåæLæLææLæLææLæLæçLçLççLçLççLçLç

Ω(@, !n[in n], 1, tt)

*

ho(n)is(n)

in n

e2 : n

ho(@)is(@)

Figure 6.12: HABA state (up to isomorphism) returned by Ω(@, !n[in n], 1, tt).

Finally, the next definition give the encoding of a process in a L-canonical
HABA state. Ω(@, P, 1, tt) does not necessarily return a canonical state. That
happens only in some circumstances involving unbounded entities. In order to
get a canonical state, Ω(@, P, 1, tt) is first expanded to a safe state and then
contracted by the canonical form.

Definition 6.3.21 (Process encoding). The process encoding function D :

6.3 An analysis oriented semantics with HABA 217

èLèèLèéLééLéêLêLêêLêLêëLëLëëLëLë
in n
e3 : n
*

e2 : n
in n

ho(n)is(n)ho(@)is(@)

Figure 6.13: 1-canonical representation of Ω(@, !n[in n], 1, tt).

Proc→ Conf× (Ent → 2Proc) is defined by:

D(P) = 〈cf(γ′),PΩ(@,P,1,tt){ρ(P)/is(@)}〉

where h : γ′�−→γΩ(@,P,1,tt) is a contractive morphism such that ∀e ∈ E∗
γ′ :

|h−1(e)| = L+M + 1 and γ ′ is L-safe.

Note that the condition on h corresponds to require that the shrink factor
in every unbounded entity is precisely L + M + 1, or in other words, every
unbounded entity is replaced by a chain of L+M+1 entities. By the canonical
form of γ′, these chains will be reduced to chains with L concrete entities
pointing to an entity in Eho

n(P) (because of L-safety), followed by an unbounded

entity (since there are M + 1 remaining entities).
For example, the state in Figure 6.12 is not L-canonical for any L > 0.

The canonical form automatically provides us with the correct representation
needed for the simulation of P ’s behaviour. Figure 6.13 depicts the resulting
1-canonical state obtained after the application of the canonical form to a safe
configuration γ′ where the unbounded entity e2 is expanded in L + M + 1
concrete entities. Note that for any M > 0 there is only one such γ ′ (up to
isomorphism), moreover the canonical form is also unique up to isomorphism
by Theorem 5.6.16.

The definition D assigns to the inactive site is(@) the set ρ(P) containing
the capabilities to be executed by @.

6.3.8 Pre-initial and initial state construction

In Section 6.3.5 we have informally introduced the idea and the motivation of
pre-initial and initial state. The function Ω, and D provide us with the main
ingredients necessary for the definition of these states.

For any process P , its pre-initial state is given by:

qpre = Ω(@, P, 1,ff) (6.11)

References among entities are defined — by the application of Ω(@, P, 1,ff) —
in order to follow the (inactive) scheme introduced informally in Section 6.3.2

218 Chapter 6 – An application: analysis of Mobile Ambients

(in particular see Figure 6.6). From the previous definition we have that in the
pre-initial state every ambient in P is inactive.

Given the mapping D, the definition of initial state is straightforward :

qin = D(P). (6.12)

qpre performs the transition qpre −→λpre
qin where λpre is defined by:

λpre = hcf ◦ h
−1(γpre =

id
=� γΩ(@,P,1,tt)). (6.13)

The morphism h : γ′�−→γΩ(@,P,1,tt)) is the one given in the definition of D(P).
This definition corresponds to λ used in the assignment rule for the symbolic
semantics in Table 5.6.4 (cf. Section 5.6.4). The same definition of reallocation
will be used in the operational rules for the execution of capabilities. The
correspondence to the reallocation of the assignment rule for the language Ln
is not surprising since the execution of capabilities correspond to manipulation
of pointers and therefore it is essentially an “atomic” sequence of assignments.
Proposition 5.6.20 ensures that λ is a indeed a reallocation.

6.3.9 Configuration link manipulations

In the definition of the operational model, the computation of a process P
corresponds to specific pointer manipulations that mimic the movements of P
ambients.

Activating ambients. In Section 6.3.7, we have seen that active ambients in
a HABA state modelling P correspond to enabled ambients in P . Informally, if
an ambient is enabled means that one of its instances can execute capabilities.
During the computation if an ambient a executes the capabilityN of the process
N.Q, since Q is no longer guarded by N , some ambients in Q may become
enabled. In the HABA state these ambients must be activated in order to
have a consistent representation of the process. Here we define a function
actQ,a(γ) that modifies the pointer structure of γ in such a way that every
enabled ambients of the process Q rooted in a becomes active.

actQ,a(γ) = (γ\γΩ(a,Q,1,ff)) ∪ γΩ(a,Q,1,tt).

The activation process consists of replacing the part of the configuration related
to Q with inactive representation (i.e., Ω(a,Q, 1,ff)) by the configuration where
the enabled ambients of Q are active, i.e., Ω(a,Q, 1, tt).

Proposition 6.3.22.

∀m ∈ n(Q) : (m ∈ enab(Q) ⇔ m is active in Ω(a,Q, 1, tt)).

Proof. Straightforward by induction on the structure of Q.

Example 6.3.23. Figure 6.14 depicts the activation of the ambient m by the
outer-most ambient @. It corresponds to actm[0],@(γ).

6.3 An analysis oriented semantics with HABA 219

ìLìLììLìLìíLíLííLíLíîLîLîîLîLîïLïLïïLïLï ðLðLððLðLððLðLðñLñLññLñLññLñLñ òLòòLòòLòóLóóLóóLó

e1 : m

is(@) ho(@) is(m)ho(m)

Ω(@,m[0], 1,ff)

activate

Ω(@,m[0], 1, tt)

is(@) ho(@)

e1 : m

is(m)ho(m)

Figure 6.14: Rearrangements of pointers performed by actm[0],@(γ) activating
m.

Moving ambients. The execution of capabilities in and out involves moving
entities from one host entity to another. In our setting, this activity requires
some re-adjustments in order to keep a consistent structure of the configuration.
For example, several instances of an ambient b contained in a form a queue (cf.
Figure 6.8). If another copy e:b enters a, it is enqueued in the first position
of the queue. Symmetrically, if a copy of b moves out a (in Figure 6.8 the
entity e4) it must be dequeued and enqueued in the target ambient. We define
the function move(γ, e 7→ ê) that, in order to move e inside ê, manipulates γ
according to the consistency requirements just described. move : Conf×Ent×
Ent → Conf is defined by:

move(γ, e 7→ ê) = (Eγ , µγ{ê/e, µγ(e)/µ
−1
γ (e), e/e′}, Cγ)

where µγ(e
′) = ê, A(e′) = A(e). The entity e moves inside ê (the first point-

ers update of µγ). The second and the third update concern the consistency
discussed above. In particular, if there is a queue starting with an entity
µ−1(e) pointing to e after the transition, µ−1(e) points to µ(e) (cf. second link
update). Moreover, ê may already have a queue (with first element e′) rep-
resenting copies of A(e). In this case, e is inserted in the first position (third
link update)4. Figure 6.15 shows how the configuration changes when e4 moves
inside ho(n).

Updating the state for the In/Out capabilities. There are more mod-
ifications to carry out during the execution of capabilities in and out than
those performed by move . More specifically, assume there is an entity e that
executes N.Q where N is either in or out . The execution of N requires three
kinds of tasks:

(i) pointer rearrangements moving e from its current location to the target
location and those due for the consistency of the configuration. As we
have seen, these updates are performed by move .

4Note that e′ may not exist in which case this update does not take place.

220 Chapter 6 – An application: analysis of Mobile Ambients

ôLôLôôLôLôõLõLõõLõLõ

öLööLö÷L÷÷L÷

øLøLøøLøLøùLùLùùLùLù úLúLúúLúLúûLûLûûLûLû

üLüLüüLüLüýLýLýýLýLý þLþLþþLþLþÿLÿLÿÿLÿLÿ

is(a)

e2 : n e7 : be6 : be5 : be4 : b

ho(a)

e3 : n

move(γ, e3 7→ ho(n))

is(a)

e2 : n

ho(a)

e3 : n

is(b)

ho(b)

e7 : be6 : be5 : b

ho(n)

e1 : b e4 : b

is(n)

ho(n)

is(b)

ho(b)

is(n)

e1 : b

Figure 6.15: Rearrangements of pointers for move(γ, e4 7→ ho(n)).

(ii) rearrangements due to the activation the ambients that in Q become
enabled.

(iii) the set of capabilities P(e) should be updated in order to record that e
has executed N and that it must continue with Q.

We define the function IOUp(q,N.Q, e 7→ ê) that manipulates the state q ac-
cording to (i)–(iii) when e moves inside ê because of the execution of N and
continue with Q. IOUp : ((Conf × Ent ⇀ 2Proc) × Proc × Ent × Ent) →
(Conf× Ent ⇀ 2Proc) is defined by:

IOUp(q,N.Q, e 7→ ê) = 〈actQ,A(e)(move(γq , e 7→ ê)),

P{(P(e)\{N.Q} ∪ ρ(Q))/e}〉

The configuration of the state is obtained applying first the rearrangements to
move e inside ê (this is done by move). After the manipulation of pointers
activation takes place. The component P(e) is obtained deleting N.Q and
adding the subprocesses to be executed in Q, i.e., ρ(Q).

6.3 An analysis oriented semantics with HABA 221

Dissolving ambients. The next operation manipulates a configuration γ in
order to dissolve an ambient. This will be used to define the update of the state
for the open capability rule. Informally dissolve(γ, e′, e) modifies γ in such a
way that the ambient of e′, say a, opens the ambient represented by e, say b.
The pointers manipulation involving the opening of b consists in the acquisition
of its inner ambients by a; The function dissolve : (Conf×Ent×Ent)→ Conf
is defined by:

dissolve(γ, e′, e:b) = (Eγ\{e}, µγ{e
′/µ−1

γ (e), e′/µ−1
γ (ho(b))}, Cγ �Eγ\{e})

When called, dissolve , the entity e′ is a host entity of an ambient say a. γ is
updated first of all in order to link to the host e′ some possible other copies of
b contained in a, i.e., µ−1

γ (e). Secondly, a acquires the ambients nested inside
the copy of b (given by e), that is µ−1

γ (ho(b)).

Updating the state for the open capability. As for in and out , we now
define the update of the state when open is executed. This involves as in the
previous case, a rearrangement of links done by dissolve , the activation of the
ambients that become enabled and the update of the set of subprocesses that
remain to be done by the entity executing open. OpenUp : ((Conf × Ent ⇀
2Proc)× Ent × Ent ×Proc)→ (Conf × Ent ⇀ 2Proc) is defined by:

OpenUp(q,N.Q, e′:a, e) = 〈actQ,a(dissolve(γq, ho(a), e)),

P{(P(e′)\{N.Q} ∪ ρ(Q) ∪ P(e))/e′}〉

Note that e′ is the entity executing open . Since it is a copy of ambient a, its
host is passed as parameter of dissolve . However, e′ takes the processes P(e)
that were supposed to be executed by e.

6.3.10 A HABA semantics of mobile ambients

We can now define the HABA HP meant as a symbolic model for the process
P .

Definition 6.3.24. Let P be a well-indexed process. The abstract semantics
of P is the HABA HP = 〈XP , S, E,→, I,F〉 where

• XP = {xn | n ∈ n(P)} ∪ {x@};

• S ⊆ Conf × (Ent ⇀ 2Proc)) such that qpre, qin ∈ S, where for state
〈γ,P〉 ∈ S, the component P(e) is the set of processes that must be
executed by e.

• E(γ,P) = 〈γ,P〉;

• let R ⊆ S × (Ent × Ent → M) × S be the smallest relation satis-
fying the rules in Table 6.3.10. Then −→ = R ∪ {(qpre, λpre, qin)} ∪
{(q, id , q) | ¬∃q′, λ : (q, λ, q′) ∈ R};

222 Chapter 6 – An application: analysis of Mobile Ambients

In
e ∈ Em, in b.Q ∈ Pq(e), bi ∈ siblings(e)

q −→λ cf(γ′′),P′

where 〈γ′,P′〉 = IOUp(q, in b.Q, e 7→ ho(bi)) and (γ′′, h) ∈ SExp(γ′)

Out
e ∈ Em, out b.Q ∈ P(e), e ≺ ho(bi) a ∈ parents(bi)

q −→λ cf(γ′′),P′

where 〈γ′,P′〉 = IOUp(q, out b.Q, e 7→ ho(a)) and (γ′′, h) ∈ SExp(γ′)

Open
e ∈ Em

@, open b.Q ∈ P(e), e′:bi ∈ son(A(e))

q −→λ cf(γ′′),P′

where 〈γ′,P′〉 = OpenUp(q, open b.Q, e, e′) and (γ′′, h) ∈ SExp(γ′)

Bang
e ∈ Em

@, !Q ∈ P(e)

q −→λ cf(γ′),P′

where P′ = Pq{(Pq(e) ∪ ρ(Q))/e} and (γ′, h) ∈ SExp(actQ,A(e)(γq))

Table 6.3: Operational rules for Mobile ambients.

• dom(I) = {qpre} and I(qpre) = 〈∅, ϑ〉 where ϑ(xn) = is(n) (n ∈ n(P)).

• F = {{q ∈ S | ∃q′, λ : q −→λ q
′ ⇒ q = q′}}.

The set XP contains a logical variable for each ambient name occurring in P
plus x@ that is used to refer to the outer-most ambient. The transition relation

−→ contains those transitions defined by means of the rules in Table 6.3.10
together with a transition from the pre-initial state and an “artificial” self-loop
for each deadlocked state in R. The set of accept states F is defined as the
set of states which only have a self-loop. Every computation reaches an accept
state that is visited infinitely often, fulfilling therefore, the generalised Büchi
acceptance condition. The set of initial states contains only the pre-initial state
and the interpretation ϑ that allows us to refer to ambient names in Na``TL
formulae.

6.3 An analysis oriented semantics with HABA 223

q′′

id hcf

cf(q′′)q

q′

λ

h

Figure 6.16: Relations among morphisms involved in a transition.

Operational rules. The execution of a capability N.Q, in a given state
q, applies the following pattern: γq is first modified in order to achieve the
needed link rearrangements that depends from the capability executed and Pq
is updated. This is performed by IOUp (for in and out) or OpenUp (for open).

Applying such pointer updating corresponds to an id reallocation from γ
to γ′. Because of the rearrangements of the links, γ ′ may be not canonical.
Therefore, we consider its safe expansion, i.e. SExp(γ ′) (cf. Definition 5.6.18)
and for each of its element (γ ′′, h) we take the canonical form cf(γ ′′). The
overall behaviour, and the relations among morphisms and reallocations just
described, can be summarised with the diagram in Figure 6.16. This strategy
is the same as the one applied to the rule of the assignment statement in the
symbolic semantics in Chapter 5. The reader is referred to that chapter for a
full treatment of the topic. For this reason, also the reallocation λ in the rules
for in , out , open of Table 6.3.10 is the same as the one of the assignment rule
in Table 5.6.4 (cf. Section 5.6.4):

λ = hcf ◦ h
−1(γ =

id
=� γ′)

Proposition 5.6.20 ensures that λ is a reallocation.
For a configuration γ, the transition relation uses some auxiliary concepts.

The entities (in the source state q) that are allowed to move, called mobile
entities, are indicated by Em and are defined as:

Em = {e ∈ Ec
q | A(e) is active, µq(e) ∈ Eho

n(P)}.

Only concrete non-fixed entities modelling an active ambient and directly point-
ing a host can move. Other concrete entities do not move. In the rules,
Em

@ = Em ∪ {is(@)}.

Example 6.3.25. For the state represented in Figure 6.8, we have Em =
{e1, e3, e4}. Entities such as e2 and e5 can only move when they are shifted to
the beginning of the queue, i.e., when e3 and e4 have moved, respectively.

224 Chapter 6 – An application: analysis of Mobile Ambients

Moreover, we use:

siblings(e) = {bi | ∃e′:bi 6= e ∧ (µγ(e
′) = µγ(e) ∨ µγ(e′) = e)}

son(a) = {e′ ∈ Eq\E is
n(P) | e

′ ≺q ho(a)}

parents(bi) = {a | ∃e′:bi ∈ son(a)}

siblings(e) is the set of ambients having an instance with the same parent of e.
son(a) returns the entities that are sons of the ambient a. parents(bi) is the
set of parents of indexed ambients bi.

Example 6.3.26. For the initial state in Figure 6.7 we have:

siblings(e1) = {b}

siblings(e3) = ∅

parents(mail) = {m}

son(@) = {e1, e2}.

We explain the rules for the transition relation.

• In rule: If a mobile entity e has among its enabled capabilities in b.Q
and there exists a sibling ambient b then e moves inside b. Any indexed
bi must be considered.

• Out rule: If a mobile entity e executes out b.Q and its father is any
indexed ambient bi, i.e. e ≺ ho(bi) then e must move in every ambient
containing a copy of bi.

• Open rule: A mobile entity e can execute open b, if there exists a
son(A(e)) e′ modelling a copy of b. Entity e′ is dissolved and the compo-
nent P(e) acquires the processes contained in P(e′). This is done by the
application of OpenUp.

• Bang rule. If a process !Q is contained in the set of processes that e
must execute, then !Q is expanded using the equivalence !Q ≡ Q|!Q.

Note that we do not need structural rules for parallel composition, restriction,
ambients since a those construct are implicitly represented in the configuration
of a state.

Example 6.3.27. The HABA modelling SYS 1 of Example 6.3.1 is depicted in
Figure 6.17. as we have seen in that example, for SYS 1 we wanted to check the
secrecy property: (UA) “no untrusted ambients can access D” and expressed
by the Na``TL-formula:

φ ≡ ∃x : x xmsg ∧ F(x / xmsg ∧ x.a 6= mail ∧ x.a 6= b).

6.4 Related work 225

No runs of the HABA satisfies φ therefore in SYS 1 only b can access the secret
data D.

Example 6.3.28. Part of the HABA for the process !n[!in n] is shown in Fig-
ure 6.18 for L = 1 and M = 1. With this parameters we can distinguish that
there are 0,1,2, and more than 2 ambient nested in n at the same time. In-
creasing the values of L or M we can accomplish more accurate predictions at
the cost of increasing the state space of the HABA.

Given a process P , the subpart of the state containing only fixed entities is
ε(n(P)) =

⊎
a∈n(P) ε(a).

Conjecture 6.3.29. Let P̃ be a well-indexed process. If noi(P) → Q then
there exists λ and a well-indexed process Q̃′ such that D(P̃) −→λ (D(Q̃′)]n(P̃))

and noi(Q̃′) ≡ Q.

Proof. See Appendix C.

Discussion. The abstract semantics for mobile ambients presented in this
chapter provides a safe approximation of a process P . Although for many in-
teresting processes the method provides rather precise information, some limi-
tations occur on processes where name restriction is combined with replication.
Like other analyses for mobile ambients based on static methods [40, 57, 75, 86],
our semantics does not distinguish between processes !(νn)P and (νn)!P as
instead it is done by the standard semantics (cf. observation at page 199).
However, the model is able to capture precise information on the number of
copies of the same ambients that may be inside another ambient, therefore it
distinguish between P and !P . The precision can easily be increased.

6.4 Related work

The paper [86] proposes an algorithm detecting process firewalls that are not
protective. The technique is based on a control flow analysis that records
which ambients may end up inside what other ambients. The analysis does
not distinguish between a process P and !P . The same authors improve the
previous technique in [57]. The strategy is very similar to the previous paper,
however, the precision of the analysis is improved by the use of information
about the multiplicity of the number of ambients occurring within another
ambient. The distinction is within the range {0, 1, ω} where ω means “many”.

The paper [40] defines a refinement of the analysis proposed in [86] for
the special case of Safe Ambients [76]. These are a modification of mobile
ambients where the execution of a capability takes place only if both the am-
bients involved agree. The analysis proposed — as the one in [86] — does not
distinguish between different copies of the same ambient.

An abstract interpretation framework for Mobile Ambients is introduced
in [75]. Based on [57] and [40] the analysis proposed in this paper introduces

226 Chapter 6 – An application: analysis of Mobile Ambients

������������������������������������

�������������������� 	�		�		�	
�

�

�

������������������

��������

�������������������� ������������

������������������������

���������������� ������������ ������������ ������������

���������� � � � � !�!!�!!�!"�""�""�"

#�##�#$�$$�$

%�%%�%&�&&�& '�''�'(�((�()�))�)*�**�*

+�++�+,�,,�,-�--�-.�..�./�//�/0�00�01�1�11�1�12�2�22�2�2

3�3�33�3�34�44�4 5�55�56�66�6 7�77�78�88�8 9�99�9:�::�: ;�;;�;<�<<�<is(b) is(mail)

ho(msg)

e4 : msg

out m.in b.msg[out mail.D]

ho(b)

out mail.D

open msg

ho(msg)

is(msg)

ho(b)

e2 : b

is(b)

e2 : be1 : m

ho(@)is(@)

open msg

open msg

e3 : mail

ho(m)is(m)

e4 : msg

is(@)

open msg

0

is(msg)ho(mail)is(mail)ho(b)is(b)

D
e4 : msge3 : mail

ho(m)is(m)

e2 : be1 : m

ho(@)

ho(msg)

ho(msg)

ho(msg)

ho(mail)

ho(mail)

is(msg)ho(mail)is(mail)ho(b)is(b)

D
e3 : mail

ho(m)is(m)

e2 : be1 : m

ho(@)

is(@)

open msg

open msg

in b.msg[out mail.D]

is(msg)

qin

qpre

id

open msg

out mail

in b

λpre

out m

out m.in b.msg[out mail.D]
out mail.D

ho(@)

is(@)

open msg

open msg

0

is(msg)

out mail.D

ho(msg)

e4 : msg

is(mail)ho(b)is(b)

e3 : mail

ho(m)is(m)

e2 : be1 : m

open msg

open msg

0

is(@) ho(b)is(b) ho(mail)is(mail)

out mail.D
e4 : msg

is(msg)

e3 : mail

ho(m)is(m)

e2 : be1 : m

ho(@)

ho(m)

e1 : m

is(m)

ho(@)

is(@)

e3 : mail

is(mail)

ho(mail)

Figure 6.17: The HABA representing SYS 1 of Example 6.3.1.

6.4 Related work 227

=>==>=?>??>? @>@@>@A>AA>A

B>BB>BC>CC>CD>DD>DE>EE>EF>FF>FG>GG>GH>H>HH>H>HI>II>I

J>JJ>JK>KK>K

L>L>LL>L>LM>MM>M N>NN>NO>OO>O P>PP>PQ>QQ>Q R>RR>RS>SS>S

T>TT>TU>UU>UV>VV>VW>WW>WX>XX>XY>YY>YZ>Z>ZZ>Z>Z[>[[>[

\>\>\\>\>\]>]>]]>]>] ho(n)

!in n
e2 : n

*
e3 : n

!in n

!in n

e4 : n

bang

in

bang

is(@) ho(@) is(n) ho(n)

!in n
e2 : n

*
e3 : n

!in n

e4 : n
!in n

e5 : n
!in n

in

bang

is(n)

is(@) ho(@) is(n) ho(n)

!in n
e2 : n

*
e3 : n

!in n

bang

in

is(@) ho(@) is(n) ho(n)

!in n
e2 : n

*
e3 : n

!in n

in n

is(@) ho(@)

is(@)

ho(@) is(n) ho(n)

!in n
e2 : n

*
e3 : n

!in n

e4 : n
!in n

e5 : n
!in n

is(@) ho(@) is(n) ho(n)

!in n
e2 : n

*
e3 : n

!in n

e4 : n
!in n

e5 : n
!in n

*

in

is(@)

ho(@) is(n) ho(n)

!in n
e2 : n

*
e3 : n

!in n

e4 : n
!in n

e5 : n
!in n

*

in n

in n

is(@) ho(@) is(n) ho(n)

!in n
e2 : n

*
e3 : n

!in n

!in n

e4 : n

in n

Figure 6.18: Part of the HABA representing !n[!in n].

228 Chapter 6 – An application: analysis of Mobile Ambients

some information about multiplicity of the ambients and contextual informa-
tions.

Again, based on [57], the paper [14] defines a more accurate analysis for
capturing boundary crossing. No information on multiplicities is provided.

The kind of analysis we have developed in this chapter is clearly not the
main result of this thesis (as it is even closed by a conjecture). It is meant just as
an illustrative application example of the techniques introduced in Chapter 5.
However, it may represent an alternative approach to the main stream analysis
based on abstract interpretation and control flow analysis (in the Flow Logics
stile). It is somehow premature to draw conclusions on accuracy of these very
different techniques. Rigorous comparisons should be provided on this respect.
We leave that as future work. Nevertheless, it is worth to mention, that a strong
point of our technique seems to rely on its power of counting occurrences of
ambients, as well as its flexibility on tuning the precision. On the other hand,
it seems that this may be more difficult in the other techniques described in
the aforementioned papers. Finally, the simplicity of the model that results
just as a straightforward application of Na``TL and HABA framework appears
to us to be appealing. Even more because mobile ambients is a rather different
domain than object-based systems for which the framework was designed for
(this make the example in our opinion yet more interesting).

Somehow, different from the previous stream of work is the paper [22] where
the authors try to identify a fragment of mobile ambients that can be verified
by model-checking. For this fragment, the paper introduces a model-checking
algorithm for the Ambient Logic [20].

7

Conclusions and Future

work

In this last chapter we give some retrospective considerations on what has
been achieved in this dissertation. Moreover, taking that as a starting point,
we suggest a few possible directions that could be pursued for future research.

7.1 Achievements

In Chapter 3, we have defined BOTL, a temporal logic that is aimed at specify-
ing properties of object-based systems. It is inspired by the Object Constraint
Language (OCL) [110]. The formal semantics of BOTL was used to provide
a rigorous foundation to a significant subset of OCL including, for example,
invariants and pre- and postconditions. The formalisation was carried out by
a translation from OCL into BOTL. The first benefit was to address a few am-
biguities (as reported in the literature) that at the time of the development of
BOTL were still present in OCL. More importantly, however, we believe that
the mapping of OCL into BOTL sets the right formal foundation for the devel-
opment of model checking tools having OCL as specification language. Being a
part of the UML, OCL is rather widespread in industry. Therefore such tools
could represent a significant step towards the practical introduction of formal
methods among practitioners.

As we observed in Chapter 1, two crucial aspects of object-based systems
are the notion of dynamic allocation (birth) and deallocation (death) as well as

229

230 Chapter 7 – Conclusions and Future work

dynamic references (pointers) between objects. The contribution of the second
part of this thesis is related to these issues.

In Chapter 4 we have focused on dynamic allocation and deallocation by
a subset of BOTL called A``TL in which these two notions are primitives.
A``TL contributes to the specification of relevant properties about allocation
and deallocation. On the modelling side, we have defined an extension of
(generalised) Büchi automata, called HABA, whose runs generate models of
A``TL-formulae. HABA give finite-state abstractions of infinite-state systems
whose infinite nature stems from unbounded allocations. The use of HABA
is exemplified by defining finite-state semantics for a simple programming lan-
guage having intrinsically infinite behaviour. The most important contribution
w.r.t. the notion of birth and death is the proof of decidability of the model
checking problem for A``TL. We have defined an algorithm for model checking
A``TL-formulae against HABA. To the best of our knowledge, this represents
the first effective approach for model-checking systems with an unbounded
number of entities.

In Chapter 5, we have generalised the framework developed for A``TL and
HABA in order to include the notion of dynamic references. Indeed more real-
istic systems can be specified and modelled with this approach. The new frame-
work — which comprehends a logic called Na``TL and HABA with references
as models — is equipped with a more sophisticated mechanism of abstraction
able to capture a wider range of infinite behaviours in a finite way. This has
been illustrated by an example programming language with a simple notion of
navigation. Its operational semantics defined by HABA with references is finite.
Most importantly, also for this extended framework we have defined a model
checking algorithm. With respect to the A``TL algorithm, the full decidability
is lost due to the inherent complexity of the systems considered. Therefore the
algorithm is sound but not complete (false negatives can be returned).

Although this dissertation focuses on aspects of object-based systems, the
techniques that have been developed seem not to be limited to this domain.
This is probably because at a more abstract level, allocation and deallocation
of resources (channels, keys, processes, etc.) and manipulation of dynamic ref-
erences are recurrent problems in many fields of computer science. To support
this claim, we have shown (as an illustrative example) that the framework for
Na``TL and HABA may also be suitable in the context of security. In fact, in
Chapter 6, we have defined an operational semantics for the calculus of Mobile
Ambients tailored towards the detection of some interesting security properties
of mobile processes such as secrecy. The properties are expressible in Na``TL
and the model checking algorithm can be exploited to automatically discover
if the security properties may be violated.

7.2 Future work 231

7.2 Future work

Undoubtedly we close this dissertation with many open questions. Time would
most probably answer the question whether this is a bad or a good sign.

The first urgent and straightforward generalisation of the framework pre-
sented here would be to drop the (unfortunately unpleasant) constraint on the
single outgoing reference of entities imposed to simplify the technical machin-
ery and obtain very precise abstractions. This means to consider full BOTL
models. We strongly believe that this would allow the definition of the seman-
tics of realistic object-based languages by means of HABA. The generalisation
affects the notion of abstraction we have used so far. The main challenge is
then, how to find sensible abstractions of such general models and how such an
approach can scale up to systems of realistic size.

It is reasonable to believe that proper “general” abstractions for every kind
of problem do not exist. Depending on the system to be specified, different
abstractions may be better suited than others. This seems to have a traumatic
impact on the definition of operational semantics for object languages. Essen-
tially the semantics has to take into account the representation of the heap
that in turn depends on the abstraction used. By changing the abstraction, a
new semantics must be provided. Another interesting question is how much
the operational semantics and the abstraction are actually coupled? To which
extent can the two elements be designed orthogonally? With these premises, we
believe that what is needed is a mechanism to easily specify abstractions: more
precisely, a flexible way to define morphisms which are our main abstraction
tool.

A morphism meta-language. The definition of morphism given in Chap-
ter 5 incorporates some knowledge on the kind of structures from which to ab-
stract. In particular, our definition explicitly contains a condition stating that
multiple/unbounded entities abstract from “pure chains”. Our abstraction de-
pends on this explicit statement. All the other conditions on morphisms are
orthogonal. Accordingly, we could classify the conditions of morphisms in two
categories: abstraction-dependent and abstraction-independent. Some studies
we have recently carried out suggest that abstracting different kinds of heaps
by morphisms would boil down to properly replacing only the abstraction-
dependent conditions. On the contrary, abstraction-independent conditions
seem to be necessary as well as invariant w.r.t. the way to abstract the heap.
They represent minimal reasonable requirements to impose on a wide range of
abstractions (e.g., the cardinality of the abstract entity corresponds to the sum
of the concrete ones).

The issue is then how to simplify the specification of the abstraction-
dependent conditions, so that the effort to migrate from one abstraction to
another is minimised. A possibility could be the definition of some kind of
“morphism language”— such as a logic — whose formulae characterise the
abstraction-dependent properties.

232 Chapter 7 – Conclusions and Future work

The generalisation of the framework should be done so that most of the
machinery remains unchanged, like the general structure of the operational
semantics using a canonical form of the state. We have shown that this general
approach can be easily transferred to Mobile Ambients. This gives us the feeling
that the approach may still be applied to many different systems. Moreover,
we believe that such a morphism-language should consider, besides the shape
of the heap, also values (in the sense of BOTL).

Starting from a UML class model — and therefore knowing which kind of
instantiation the system has — we could design ad-hoc abstractions expressing
precisely what the morphism should collapse. For example, a binary tree node
would always have left and right children. Therefore, it could be specified by a
formula that the morphism abstracts the particular shape of a binary tree into
multiple/unbounded entities. As another example, we could specify that the
objects collapsed onto a multiple/unbounded entity should have a particular
value in a field1. In the example of the Hotel system in Chapter 2, we might
not be interested in empty rooms, therefore we could instruct the morphism to
collapse them in a single summary node. In this case the shape of this part of
the heap is not relevant.

Automata theoretic approach to A``TL. Another open research question
is the satisfiability of A``TL. During the design of model checking strategies
for A``TL, it turned out that the definition of HABA without references is not
suitable for an automata theoretic approach to model checking as described in
Chapter 2. Although HABA are appropriate for automatic verification, they
are not expressive enough to provide canonical models for A``TL-formulae.
A``TL can express the order in which entities are allocated and deallocated
(essentially dependencies between entities) but HABA without references can-
not. HABA with references, on the other hand, may be able to circumvent the
problem. It should then be investigated if indeed they are expressive enough
to act as canonical models of A``TL-formulae.

HABA as specification language. Related to the issue described above
is the possibility to use HABA as specification language (like Büchi automata
are used for specification purposes). This would also provide means for new
algorithms on the automata theoretic style which, in turn, would require the
definition of notions such as the negation of HABA as well as the intersection
(cf. Section 2.1.5). For checking the emptiness of the language of HABA
without references, the procedure 2 would suffice. Concerning HABA with
references, though, we foresee some problems (see below).

HABA with references emptiness problem. It seems quite likely that
deciding the emptiness of the language for a HABA with references is undecid-
able. Further research must be done in this direction in order to substantiate

1This is somehow similar to abstract interpretation.

7.2 Future work 233

this conjecture. Apart from the pure theoretical curiosity, the ability to de-
cide the emptiness of the language, can be very useful. First of all because, as
we have seen, it represents one of the bases of the automata theoretic model
checking algorithm. The second and most important reason has been suggested
by some of our recent studies. It seems that, by imposing a stronger notion
of fulfilling path, the decidability of the Na``TL model checking problem may
reduce to deciding whether the underlying run of the path has a non-empty
language2.

Tools implementation. A rather important aspect that has been unfortu-
nately neglected in this thesis is the implementation of the developed theories.
Experimental results would give us some insights into the usefulness of the over-
all approach. Investigations in this direction should involve also optimisations
of the algorithms presented.

Other applications. Along the lines of Chapter 6, other possible applica-
tions of the frameworks should be investigated. Chapter 6 encourages us that
the encodings of other problems in terms of HABA should be possible.

2For a more detailed discussion on this point we refer the reader to the end of Section 5.7.4.

Bibliography

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, 1999.

[3] M. Abadi and K.R.M. Leino. A logic of object-oriented programs. In M. Bidoit and
M. Dauchet, editors, Theory and Practice of Software Development (TAPSOFT),
volume 1214 of LNCS, pages 682–696. Springer, 1997.

[4] D.S. Andersen, L.H. Pedersen, H. Huttel, and J. Kleist. Objects, types and modal
logics. In Foundations of Object-Oriented Languages (FOOL), 1997. Electronic
Proceedings.

[5] T. Ball and S.K. Rajamani. The SLAM project: debugging system software via
static analysis. In Proceedings of the 29th Symposium on Principles of Programming
Languages (POPL), pages 1–3, 2002.

[6] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta
Informatica, 20(3):207–226, December 1983.

[7] M. Bidoit, R. Hennicker, F. Tort, and M. Wirsing. Correct realization of inter-
face constraints with OCL. In R. France and B. Rumpe, editors, UML’99 - The
Unified Modeling Language. Beyond the Standard. Proceedings 2nd International
Conference, volume 1723 of LNCS, pages 399–415. Springer, 1999.

[8] G. Booch. Object-Oriented Design with Applications. Benjamin-Cummings, 1990.

[9] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

[10] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. Consistency checking and
visualization of OCL constraints. In A. Evans, S. Kent, and B. Selic, editors, UML
2000 - The Unified Modeling Language. Advancing the Standard. Proceedings 3rd
International Conference, volume 1939 of LNCS, pages 294–308. Springer, 2000.

235

236 BIBLIOGRAPHY

[11] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. Theo-
retical Computer Science (TCS), 114(1):31–61, 1993.

[12] M. Bozga, R. Iosif, and Y. Lakhnech. Storeless semantics and alias logic. In
Proc. ACM SIGPLAN 2003 Workshop on Partial Evaluation and Semantics Based
Program Manipulation (PEPM). ACM, 2003.

[13] J.C. Bradfield, J.K. Filipe, and P. Stevens. Enriching OCL using observational
mu-calculus. In R.-D. Kutsche and H. Weber, editors, Fundamental Approaches to
Software Engineering, 5th International Conference, FASE 2002, volume 2306 of
LNCS, pages 203–217. Springer, 2002.

[14] C. Braghin, A. Cortesi, and R. Focardi. Control flow analysis of mobile ambients
with security boundaries. In B. Jacobs and A. Rensink, editors, Formal Methods for
Open Object-Based Distributed Systems (FMOODS 2002), pages 197–212. Kluwer,
2002.

[15] E. Brinksma. Verification is experimentation! In C. Palamidessi, editor, Concur-
rency Theory, 11th International Conference (CONCUR), volume 1877 of LNCS,
pages 17–24. Stringer, 2000.

[16] J. Büchi. Weak second order logic and finite automata. Z. Math. Logik, Grundlag.
Math., 5:66–62, 1960.

[17] L. Caires and L. Cardelli. A spatial logic for concurrency (part I). TACS’01,
2255:1–37, 2001.

[18] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In
P. Widmayer, F.T. Ruiz, R. Morales, M. Hennessy, S. Eidenbenz, and R. Conejo,
editors, Automata, Languages and Programming, 29th International Colloquium
(ICALP), volume 2380 of LNCS, pages 597–610. Springer, 2002.

[19] L. Cardelli and A.D. Gordon. Mobile ambients. In Foundations of Software Sci-
ence and Computation Structures: First International Conference, FOSSACS ’98.
Springer-Verlag, 1998.

[20] L. Cardelli and A.D. Gordon. Anytime, anywhere: Modal logics for mobile ambi-
ents. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POLP-00), pages 365–377. ACM Press, 2000.

[21] L. Cardelli and A.D. Gordon. Logical properties of name restriction. In Interna-
tional Conference on Typed Lambda Calculi and Applications (TCLA 2001), volume
2044 of LNCS, pages 46–60. Springer, 2001.

[22] W. Charatonik, A.D. Gordon, and J.-M. Talbot. Finite-control mobile ambients. In
D. Le Métayer, editor, Programming Languages and Systems, 11th European Sym-
posium on Programming (ESOP), volume 2305 of LNCS, pages 295–313. Springer,
2002.

BIBLIOGRAPHY 237

[23] Y. Choueka. Theories of automata on omega-tapes: A simplified approach. Journal
of Computer and System Sciences (JCSS), 8(2):117–141, 1974.

[24] T. Clark. Type checking UML static diagrams. In R. France and B. Rumpe, editors,
UML’99 - The Unified Modeling Language. Beyond the Standard. Proceedings 2nd
International Conference, volume 1723 of LNCS, pages 503–517. Springer, 1999.

[25] T. Clark and J. Warmer, editors. Object Modeling with the OCL, The Rationale
behind the Object Constraint Language, volume 2263 of LNCS. Springer, 2002.

[26] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In D. Kozen, editor, Proceedings of the Workshop
on Logics of Programs, volume 131 of LNCS, pages 52–71. Springer, 1981.

[27] E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan, and
L.A. Ness. Verification of the Futurebus+ cache coherence protocol. In D. Agnew,
L.J.M. Claesen, and R. Camposano, editors, Proceedings of the 11th International
Conference on Computer Hardware Description Languages and their Applications
(CHDL), pages 15–30. North-Holland, 1993.

[28] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In E.A. Emerson and A.P. Sistla, editors, Computer Aided
Verification, 12th International Conference (CAV), volume 1855 of LNCS, pages
154–169. Springer, 2000.

[29] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[30] S. Conrad and K. Turowski. Temporal OCL: Meeting specification demands for
business components. In K. Siau and T. Halpin, editors, Unified Modeling Lan-
guage: Systems Analysis, Design and Development Issues, pages 151–166. Idea
Publishing Group, 2001.

[31] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills. The Ams-
terdam manifesto on OCL. In Clark and Warmer [25], pages 115–149.

[32] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In 22nd Interna-
tional Conference on Software Engineering, pages 439–448. IEEE Computer Soci-
ety, 2000.

[33] J.C. Corbett, M.B. Dwyer, J. Hatcliff, and Robby. Expressing checkable properties
of dynamic systems: the bandera specification language. International Journal on
Software Tools for Technology Transfer, 4(1):34–56, 2002.

[34] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume Volume B: Formal Mod-
els and Sematics, pages 193–242. Elsevier and MIT Press, 1990.

238 BIBLIOGRAPHY

[35] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1(2/3):275–288, 1992.

[36] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of fixed points. In
Proceedings of the 4th ACM Symposium on Principles of Programming Languages,
pages 238–252. ACM, 1977.

[37] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

[38] J.W. de Bakker and E. de Vink. Control Flow Semantics. MIT Press, Cambridge,
MA, 1996.

[39] F.S. de Boer. A proof system for the parallel object-oriented language POOL.
In Mike Paterson, editor, 17th International Colloquium on Automata, Languages,
and Programming (ICALP), volume 443 of LNCS, pages 572–585. Springer, 1990.

[40] P. Degano, F. Levi, and C. Bodei. Safe ambients: Control flow analysis and security.
In Asian Computing Science Conference, volume 1961 of LNCS, pages 199–214.
Springer-Verlag, 2000.

[41] C. Demartini, R. Iosif, and R. Sisto. dSPIN: A dynamic extension of SPIN. In
D. Dams, R. Gerth, S. Leue, and M. Massink, editors, Proc. of the 6th International
SPIN Workshop, volume 1680 of LNCS, pages 261–276. Springer-Verlag, 1999.

[42] D. Distefano, J.-P. Katoen, and A. Rensink. On a temporal logic for object-based
systems. In S.F. Smith and C.L. Talcott, editors, Formal Methods for Open Object-
based Distributed Systems (FMOODS), pages 305–326. Kluwer Academic Publish-
ers, 2000.

[43] D. Distefano, J.-P. Katoen, and A. Rensink. Towards model checking OCL. In
Defining Precise Semantics for UML (satellite workshop of ECOOP 2000), 2000.
Position Paper.

[44] D. Distefano, A. Rensink, and J.-P. Katoen. Model checking dynamic allocation
and deallocation. CTIT Technical Report TR–CTIT–01–40, Faculty of Informatics,
University of Twente, December 2001.

[45] D. Distefano, A. Rensink, and J.-P. Katoen. Model checking birth and death. In
R.A. Baeza-Yates, U. Montanari, and N. Santoro, editors, Foundations of Infor-
mation Technology in the Era of Networking and Mobile Computing. In 2nd IFIP
International Conference on Theoretical Computer Science (TCS), pages 435–447.
Kluwer, 2002.

[46] D. Distefano, A. Rensink, and J.-P. Katoen. Who is pointing when to whom:
on model-checking pointer structures. CTIT Technical Report TR-CTIT-03-12,
Faculty of Informatics, University of Twente, March 2003.

BIBLIOGRAPHY 239

[47] E.A. Emerson. Automata, tableaux and temporal logics. In Rohit Parikh, editor,
Proceedings of the Conference on Logic of Programs, volume 193 of LNCS, pages
79–88, Brooklyn, NY, June 1985. Springer.

[48] S. Flake and W. Mueller. An OCL extension for real-time constraints. In Clark
and Warmer [25], pages 150–171.

[49] The Real-Time for Java Expert Group. The Real-Time Specification for Java 1.0.
http://www.rtj.org, 2000.

[50] M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In
G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic in Computer
Science (LICS’99), LICS, pages 214–224. IEEE Computer Society Press, 1999.

[51] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In P. Dembinski and M. Sredniawa, editors,
Proceedings of the 13th International Symposium on Protocol Specification, Testing
and Verification, pages 3–18. Chapman & Hall, 1995.

[52] M. Gogolla and M. Richters. On combining semi-formal and formal object speci-
fication techniques. In F. Parisi-Presice, editor, Recent Trends in Algebraic Devel-
opment Techniques: 12th International Workshop, (WADT’97: selected papers),
volume 1376 of LNCS. Springer, 1998.

[53] M. Gogolla and M. Richters. On constraints and queries in UML. In M. Schader
and A. Korthaus, editors, The Unified Modeling Language – Technical Aspects and
Applications, pages 109–121. Physica-Verlag, 1998.

[54] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Orna
Grumberg, editor, Proceedings of 9th International Conference on Computer Aided
Verification (CAV), volume 1254 of LNCS, pages 72–83. Springer, 1997.

[55] A. Hamie, F. Civello, J. Howse, S. Kent, and R. Mitchell. Reflections on the
Object Constraint Language. In J. Bézivin and P.-A. Muller, editors, The Unified
Modeling Language, UML’98 - Beyond the Notation. 1st International Workshop,
volume 1618 of LNCS, pages 162–172. Springer, 1998.

[56] A. Hamie, J. Howse, and S. Kent. Interpreting the Object Constraint Language.
In Proceedings 5th Asia Pacific Software Engineering Conference (APSEC ’98),
pages 288–295. IEEE Computer Society, 1998.

[57] R.R. Hansen, J.G. Jensen, F. Nielson, and H.R. Nielson. Abstract interpretation of
mobile ambients. In A.Cortesi and G. Filé, editors, Proceedings of Static Analysis,
6th International Symposium, SAS ’99, volume 1694 of LNCS, pages 135–148.
Springer, 1999.

[58] K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, 2000.

240 BIBLIOGRAPHY

[59] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with
blast. In T. Ball and S.K. Rajamani, editors, Model Checking Software, 10th Inter-
national SPIN Workshop, volume 2648 of LNCS, pages 235–239. Springer, 2003.

[60] C.A.R. Hoare and N. Wirth. An axiomatic definition of the programming language
PASCAL. Acta Informatica 2, pages 335–355, 1973.

[61] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering (TSE), 23(5):279–295, 1997.

[62] G.J. Holzmann. Software analysis and model checking. In E. Brinksma and
K.G. Larsen, editors, Computer Aided Verification, 14th International Conference
(CAV), volume 2404 of LNCS, pages 1–16. Springer, 2002.

[63] G.J. Holzmann and M.H. Smith. Software model checking. In J. Wu and S.T. Chan-
son nad Q. Gao, editors, Formal Methods for Protocol Engineering and Distributed
Systems (FORTE), pages 481–497. Kluwer, 1999.

[64] K. Huizing, R. Kuiper, and SOOP. Verification of object oriented programs using
class invariants. In T.S.E. Maibaum, editor, Fundamental Approaches to Software
Engineering, (FASE), volume 1783 of LNCS, pages 208–221. Springer, 2000.

[65] H. Hussmann, B. Demuth, and F. Finger. Modular architecture for a toolset sup-
porting OCL. In A. Evans, S. Kent, and B. Selic, editors, UML 2000 - The Unified
Modeling Language. Advancing the Standard. Proceedings 3rd International Con-
ference, volume 1939 of LNCS, pages 278–293. Springer, 2000.

[66] R. Iosif and R. Sisto. On the specification and semantics of source level properties
in Java. In Proceedings of the First International Workshop on Automated Program
Analysis, Testing and Verification, pages 83–88, 2000. (Held in conjunction with
22nd International Conference on Software Engineering).

[67] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data struc-
tures. In Proceedings of the 28th ACM Symposium on Principles of Programming
Languages (POPL), pages 14–26, 2001.

[68] D. Jackson. Alloy: A lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

[69] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Alloy constraint analyzer. In
Proceedings of the International Conference on Software Engineering, pages 730–
733. IEEE CS Press, 2000.

[70] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. TROLL — A language
for object-oriented specification of information systems. ACM Transactions on
Information Systems, 14(2):175–211, 1996.

[71] J.-P. Katoen. Concepts, Algorithms and Tools for Model Checking, volume 32-1
of Arbeitsberichte der Informatik. Friedrich-Alexander-Universität Erlangen Nürn-
berg, 1999.

BIBLIOGRAPHY 241

[72] S.A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16:83–94, 1963.

[73] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, March 2000.

[74] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
J. Palsberg, editor, Static Analysis, 7th International Symposium (SAS), volume
1824 of LNCS, pages 280–301. Springer, 2000.

[75] F. Levi and S. Maffeis. An abstract interpretation framework for analysing mobile
ambients. In P. Cousot, editor, Static Analysis, 8th International Symposium,
(SAS), volume 2126 of LNCS, pages 395–411. Springer, 2001.

[76] F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proceedings
of the 27th ACM SIGPLAN-SIGACT on Principles of Programming Languages
(POPL), pages 352–364. ACM Press, 2000.

[77] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Proceedings of the Twelfth Annual ACM Sym-
posium on Principles of Programming Languages (POPL’85), pages 97–107. ACM,
1985.

[78] Z. Manna and A. Pnueli. Temporal Verification of Reactive and Concurrent Sys-
tems: Specification. Springer-Verlag, 1991.

[79] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995.

[80] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.

[81] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, second edition,
1997.

[82] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–40,41–77, 1992.

[83] U. Montanari and M. Pistore. An introduction to history-dependent automata.
In A. Gordon, A. Pitts, and C. Talcott, editors, Conference Record of the Second
Workshop on Higher-Order Operational Techniques in Semantics (HOOTS II), vol-
ume 10 of ENTCS. Elsevier Science Publishers, 1997.

[84] U. Montanari and M. Pistore. History-dependent automata. Technical Report
TR-98-11, Dipartimento di Informatica University of Pisa, October 1998.

[85] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

242 BIBLIOGRAPHY

[86] F. Nielson, H.R. Nielson, R.R. Hansen, and J.G. Jensen. Validating farewalls in
mobile ambients. In J.C.M. Baeten and S. Mauw, editors, Proceedings of CONCUR
’99: Concurrency Theory, 10th International Conference, volume 1664 of LNCS,
pages 463–477. Springer, 1999.

[87] A.M. Odlyzko. Asymptotic enumeration methods. In R.L. Graham, M. Grötschel,
and L. Lovász, editors, Handbook of Combinatorics, volume 2, chapter 22, pages
1063–1229. North-Holland, Amsterdam, 1995.

[88] OMG. Object constraint language specification. In OMG Unified Modelling Lan-
guage Specification, version 1.3. Object Modeling Group, June 1999. [89] chapter
7.

[89] OMG. Unified Modelling Language Specification, version 1.3. Object Modeling
Group, June 1999. http://www.omg.org.

[90] M. Pistore. History-Dependent Automata. PhD thesis, University of Pisa, March
1999.

[91] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS-77), pages 46–57.
IEEE Computer Society Press, 1977.

[92] A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-oriented
languages. In D. Gries and W.-P. De Roever, editors, Programming Concepts and
Methods (PROCOMET), pages 404–424. Kluwer, 1998.

[93] S. Ramakrishnan and J. McGregor. Extending OCL to support temporal opera-
tors. In Proceedings of the 21st International Conference on Software Engineering
(ICSE99) Workshop on Testing Distributed Component-Based Systems, 1999.

[94] J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the Seventeenth Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 55–74, 2002.

[95] M. Richters. A Precise Approach to Validating UML Models and OCL Constraints.
PhD thesis, University of Bremen, 2002.

[96] M. Richters and M. Gogolla. On formalizing the UML Object Constraint Language
OCL. In T. Wang Ling, S. Ram, and M. Li Lee, editors, Proc. 17th Int. Conf.
Conceptual Modeling (ER’98), volume 1507 of LNCS, pages 449–464. Springer,
1998.

[97] M. Richters and M. Gogolla. OCL: Syntax, semantics, and tools. In Clark and
Warmer [25], pages 42–68.

[98] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 1998.

BIBLIOGRAPHY 243

[99] T.C. Ruys. Towards Effective Model Checking. PhD thesis, University of Twente,
2001.

[100] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. TOPLAS, 20(1):1–50, 1998.

[101] M. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In Proceedings of the 26th ACM Symposium on Principles of Programming
Languages (POPL), pages 105–118, 1999.

[102] A. Sernadas, C. Sernadas, and J.F. Costa. Object specification logic. Journal of
Logic and Computation, 5(5):603–630, 1995.

[103] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for büchi au-
tomata with applications to temporal logic. Theoretical Computer Science, 49:217–
237, 1987.

[104] M. Smyth. Topology. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume 1, pages 641–761. Claredon Press,
1992.

[105] J. Staunstrup, H.R. Andersen, H. Hulgaard, J. Lind-Nielsen, K.G. Larsen,
G. Behrmann, K.J. Kristoffersen, A. Skou, and N.B. Theilgaard H. Leerberg. Prac-
tical verification of embedded software. IEEE Computer, 33(5):68–75, 2000.

[106] P. Stevens and Pooley R. Using UML: software engineering with objects and com-
ponents. Object Technology Series. Addison-Wesley Longman, 1999.

[107] R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of
Computing, 1(2):146–160, 1972.

[108] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 4, pages 133–191. Elsevier Science Pub-
lishers B.V., 1990.

[109] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In Proceedings 1st Annual IEEE Symp. on Logic
in Computer Science, LICS’86, Cambridge, MA, USA, 16–18 June 1986, pages
332–344. IEEE Computer Society Press, 1986.

[110] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1998.

[111] J. Warmer and A. Kleppe. OCL: The constraint language of the UML. Journal of
Object-Oriented Programming, 12(1):10–13, 1999.

[112] E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued
logic. In C. Norris and J.J.B. Fenwick, editors, Proceedings of the 28th ACM
Symposium on Principles of Programming Languages (POPL), pages 27–40. ACM
Press, 2001.

244 BIBLIOGRAPHY

[113] E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap proper-
ties specified via evolution logic. In P. Degano, editor, Programming Languages
and Systems, 12th European Symposium on Programming (ESOP), volume 2618 of
LNCS, pages 204–222. Springer, 2003.

[114] P. Ziemann and M. Gogolla. An extension of OCL with temporal logic. In
J. Jürjens, M.V. Cengarle, E.B. Fernandez, B. Rumpe, and R. Sandner, editors,
Critical Systems Development with UML – Proceedings of the UML’02 Workshop,
pages 53–62. Technische Universität München, Institut für Informatik, 2002.

A

Proofs of Chapter 4

A.1 Proofs of Section 4.2

Proposition 4.2.12 For A``TL-formula φ, folded allocation sequences σf
and allocation sequence σu:

1. For every (σu, Nu, θu) there exists a (σf , Nf , θf) such that

(σu, Nu, θu) v
fold (σf , Nf , θf)

2. For every (σf , Nf , θf) there exists a (σu, Nu, θu) such that

(σu, Nu, θu) v
fold (σf , Nf , θf).

Proof.

1. Trivial by taking (σf , Nf , θf) = (id (σu), Nu, θu).

2. Let σf =E0λ0E1λ1 · · · . We prove the proposition by defining (σu, Nu, θu)
such that id (σu) ∼= σf . Let σu = E′

0E
′
1 · · · . By definition of ∼=, id(σu) ∼=

σf if (for all i > 0) Ei ∼= E′
i and

λi ◦ hi = hi+1 ◦ id i (A.1)

where hi is an isomorphism between Ei and E′
i.

We show that it is possible to define such E ′
i by induction on i.

245

246 Appendix A – Proofs of Chapter 4

[Base] It suffices to choose E ′
0 such that |E0| = |E′

0|. As these sets are
isomorphic, let h0 be such isomorphism between E0 and E′

0.

[Step] Assume we have constructed the sequences up to index i (with i >
0). The proof obligation is to construct E ′

i+1
∼= Ei+1 satisfying (A.1). Let

E′
i+1 = Eold ∪Enew with Eold ∩Enew = ∅. Choose Eold = h−1

i (dom(λi))
i.e., Eold ⊆ E′

i is the set of entities that do not die during the transition
from Ei to Ei+1, and that in E′

i+1 are old. Enew corresponds to the new
entities of Ei+1. Choose Enew such that |Enew | = |Ei+1\cod(λi)| and
Enew ∩ E′

i = ∅. The first constraint on Enew avoids to choose entities
that in E′

i correspond to entities in Ei that died during the transition
from Ei to Ei+1. The second constraint establishes Eold ∩Enew = ∅. As
|Enew| = |Ei+1\cod(λi)|, Enew is isomorphic to the set of new entities
in Ei+1; let h : Enew → (Ei+1\cod(λi)) be such isomorphism. Then we
define hi+1 : E′

i+1 → Ei+1 by:

hi+1(e) =

{
λi ◦ hi(e) if e ∈ Eold
h(e) if e ∈ Enew .

It is easy to see that this definition satisfies (A.1).

A.2 Proofs of Section 4.3

Lemma 4.3.9 For HABA H and any expansion Exp(H):

(a) L(Exp(H)) wfold L(H) and

(b) L(Exp(H)) vfold L(H).

Proof. Let H be a HABA and Exp(H) an ABA that expands H with ψ :
QExp(H) → QH surjective.

(a) Let (σ,N, θ) ∈ L(H). To prove: there exists (σ′, N ′, θ′) ∈ L(Exp(H))
such that (σ′, N ′, θ′) vfold (σ,N, θ). Let σ = E0λ

σ
0E1λ

σ
1 · · · be such that ρ =

q0λ0q1λ1 · · · ∈ runs(H) generates (σ,N, θ) with a generator (φi)i∈N. Let ρ′ =
q′0q

′
1 · · · ∈ runs(Exp(H)). As Exp(H) expands H, it follows that for i > 0:

qi = ψ(q′i), q
′
i −→ q′i+1 expands qi −→λi

qi+1 and |Eq′i | = |Ei|. These facts relate
ρ, ρ′ and σ. Let σ′ = Eq′0Eq′1Eq′2 · · · . It follows directly that ρ′ accepts σ′.
Note that, by construction, φq′i : Eq′i → Eqi and φi : Ei → E∞

qi
are bijective on

the entities that are not mapped onto∞, i.e., |Ei\E
∞
i | = |Eqi | = |Eq′i\E

∞
q′i
| for

all i > 0. In order to show that id (σ′) ∼= σ, we prove that there exists a family
of bijections (hi)i>0 with hi : Eq′i → Ei such that

λσi ◦ hi = hi+1 ◦ idEq′
i
∩Eq′

i+1
. (A.2)

Then it follows (id (σ′), h−1
0 (N), h−1

0 ◦ θ)
∼= (σ,N, θ), and by definition,

(σ′, h−1
0 (N), h−1

0 ◦ θ) v
fold (σ,N, θ)

A.2 Proofs of Section 4.3 247

λi

λσi

e′′i+1 ∈ Eqi+1

ei+1 ∈ Ei+1ei ∈ Ei

e′′i ∈ Eqi

φi+1φi

hi+1hi

idEq′
i
∩Eq′

i+1

φq′i φq′i+1

e′i ∈ Eψ(qi+1)e′i ∈ Eψ(qi)

Figure A.1: qi is generated by q′i = ψ(qi).

which proves (a). Consider the following definitions of hi. For i = 0, let:

h0(e) =

{
h̃(e) if φq′0 (e) =∞
φ−1

0 ◦ φq′0 (e) if φq′0 (e) 6=∞

where h̃ is an arbitrary isomorphism between E∞
q′0

and E∞
0 . Note that such

isomorphism exists, since |E∞
q′i
| = |E∞

i | for all i. For i > 0, let:

hi+1(e) =

{
λσi ◦ hi ◦ id−1

Eq′
i
∩Eq′

i+1

(e) if φq′i+1
(e) =∞

φ−1
i+1 ◦ φq′i+1

(e) if φq′i+1
(e) 6=∞

The fact that hi+1 is well defined can be seen as follows. If φq′i+1
(e) = ∞

then e ∈ Eq′i ∩ Eq′i+1
, otherwise the number of new entities in Eq′i+1

and Eqi+1

would differ, which cannot be the case due to condition (ii) of Def. 4.3.8. Thus,
id−1
Eq′

i
∩Eq′

i+1

(e) is defined. If φq′i+1
(e) 6=∞ then hi+1(e) is defined, since φi+1 is

bijective on entities not mapped onto ∞.
We now show that hi satisfies (A.2) in the following steps (cf. Fig. A.1):

For all i > 0:
φq′i = φi ◦ hi (A.3)

The proof is by induction on i.
(Base) For i = 0 it follows directly from the definition of h0.
(Step) Assume (A.3) holds for i > 0. We prove case i+1. According to the

definition of hi+1, we distinguish:

• φq′i+1
(e) 6=∞. Then φi+1 ◦ hi+1(e) = φi+1 ◦ φ

−1
i+1 ◦ φq′i+1

(e) = φq′i+1
(e).

248 Appendix A – Proofs of Chapter 4

• φq′i+1
(e) =∞. Then we have

φi+1 ◦ hi+1(e)

= φi+1 ◦ λσi ◦ hi ◦ id−1
Eq′

i
∩Eq′

i+1

(e)

= [φq′i+1
(e) =∞ implies e ∈ Eq′i ∩ Eq′i+1

]

φi+1 ◦ λσi ◦ hi(e)
= [by condition 4 of Def. 4.3.6]
λi ◦ φi ◦ hi(e)

= [by induction hypothesis]
λi ◦ φq′i

= [by condition (i) of Def. 4.3.8]
φq′i+1

◦ idEq′
i
∩Eq′

i+1

(e)

= φq′i+1
(e)

This completes the proof of (A.3). Using this fact, we prove for all i > 0:

dom(λσi ◦ hi) = dom(hi+1 ◦ idEq′
i
∩Eq′

i+1
) (A.4)

Note that dom(hi+1 ◦ idEq′
i
∩Eq′

i+1
) = Eq′i ∩Eq′i+1

and dom(λσi ◦hi) = {e ∈ Eq′i |

hi(e) ∈ dom(λσi)}.

• ‘⊇’: let e ∈ Eq′i ∩ Eq′i+1
. By (A.3) it follows φq′i(e) = φi ◦ hi(e). By

condition (i) of Def. 4.3.8, we have that λi ◦φi ◦hi(e) is defined, since e ∈
Eq′i ∩Eq′i+1

. This implies by condition 4 of Def. 4.3.6 that φi+1 ◦λσi ◦hi(e)

is defined and therefore e ∈ dom(λσi ◦ hi).

• ‘⊆’: let e ∈ dom(λσi ◦ hi). Since λσi ◦ hi(e) is defined, φi+1 ◦ λσi ◦ hi(e)
is defined as well. By condition 4 of Def. 4.3.6, λi ◦ φi ◦ hi(e) is defined.
From (A.3) it follows that λi ◦ φq′i (e) is defined. But then by condition
(i) of Def. 4.3.8, it must be e ∈ Eq′i ∩ Eq′i+1

.

This completes the proof of (A.4). Finally, we prove for all i > 0:

∀e ∈ dom(λσi ◦ hi) :
(
λσi ◦ hi(e) = hi+1 ◦ idEq′

i
∩Eq′

i+1
(e)

)
. (A.5)

The equality can be also understood by the fact that the diagram in Fig. A.1
commutes. Let e ∈ Eq′i ∩ Eq′i+1

. We distinguish two cases:

A.2 Proofs of Section 4.3 249

• φq′i+1
(e) 6=∞. Then

λσi ◦ hi(e)
= [by definition of hi]
λσi ◦ φ

−1
i ◦ φq′i(e)

= [since φ−1
i+1(e) is defined and by Def. 4.3.6 φ−1

i+1 ◦ λi ◦ φi = λσi]
φ−1
i+1 ◦ λi ◦ φi ◦ φ

−1
i ◦ φq′i(e)

= φ−1
i+1 ◦ λi ◦ φq′i(e)

= [q′i −→ q′i+1 expands qi −→λi
qi+1, by condition (i) of Def. 4.3.8]

φ−1
i+1 ◦ φq′i+1

◦ idEq′
i
∩Eq′

i+1
(e)

= [φq′i+1
(e) 6=∞, definition of hi+1]

hi+1 ◦ idEq′
i
∩Eq′

i+1
(e).

• φq′i+1
(e) =∞. Then we have

λσ ◦ hi(e)
= λσ ◦ hi ◦ id−1

Eq′
i
∩Eq′

i+1

◦ idEq′
i
∩Eq′

i+1
(e)

= [by definition of hi+1]
hi+1 ◦ idEq′

i
∩Eq′

i+1
(e).

From (A.4) and (A.5) it follows (A.2). This completes the proof of (a).

(b) Let (σ,N, θ) ∈ L(Exp(H)) with σ = E0E1E2 · · · and ρ = q0q1q2 · · · be
the run that generates σ. To prove: there exists σ′ ∈ L(H) such that σ′ ∼=
id (σ). Since ρ ∈ runs(Exp(H)), there exists ρ′ = ψ(q0)λ0ψ(q1)λ1 · · · ∈ runs(H)
such that qi −→ qi+1 expands ψ(qi) −→λi

ψ(qi+1) for all i > 0. Since ρ is a
run of Exp(H), every state in ρ satisfies conditions 1–6 of Def. 4.3.8 for a
family of functions φqi : Eqi → E∞

ψ(qi)
. Choose σ′ = id(σ). We show that ρ′

generates (id(σ), N, θ). This amounts to prove the existence of a generator φ′
i :

Ei → E∞
ψ(qi)

satisfying the conditions of Def. 4.3.6. Let φ′
i = φqi . Conditions

1–3 follow directly from the definition of φqi (since by definition it satisfies
conditions 1–3 of Def. 4.3.8). Furthermore, by definition of expansion: λi◦φqi =
φqi+1 ◦ idEq1∩Eq2

. Thus, condition 4 is fulfilled. Consider now condition 5.
Assume e ∈ Ei+1, φi+1(e) =∞ and e /∈ Ei. Then e ∈ Eqi+1\Eqi and therefore
φi+1(e) ∈ Eψ(qi+1)\cod(λi). This is, however, impossible since by hypothesis
φi+1(e) =∞. Finally, condition 6 holds by definition of φi. Hence, we conclude
that (id (σ), N, θ) ∈ L(H).

Theorem 4.3.10 For any HABA H and expansion Exp(H):

L(H) ∼= L(id (Exp(H))).

Proof. ‘vfold ’: Let (σ,N, θ) ∈ L(H). To prove: there exists (σ′, N ′, θ′) ∈
L(id (Exp(H))) such that (σ,N, θ) ∼= (σ′, N ′, θ′). By Lemma 4.3.9.a it fol-
lows that there exists (σ′′, N ′′, θ′′) ∈ L(Exp(H)) such that (σ,N, θ) vfold

250 Appendix A – Proofs of Chapter 4

(σ′′, N ′′, θ′′). By definition of vfold , thus

(σ,N, θ) ∼= (id (σ′′), N ′′, θ′′) ∈ L(id (Exp(H))).

‘wfold ’: Let (σ,N, θ) ∈ L(id (Exp(H))). To prove: there exists (σ′, N ′, θ′) ∈
L(H) such that (σ,N, θ) ∼= (σ′, N ′, θ′). As (σ,N, θ) ∈ L(id (Exp(H))) we
have (σ,N, θ) = (id (σ′′), N, θ) for some σ′′ with (σ′′, N, θ) ∈ L(Exp(H)). By
Lemma 4.3.9.b it follows that (σ′′, N, θ) vfold (σ′, N ′, θ′) for some (σ′, N ′, θ′) ∈
L(H). By definition of vfold , thus (σ,N, θ) ∼= (σ′, N ′, θ′).

A.3 Proofs of Section 4.4

Theorem 4.4.9 For any p ∈ L: Ap is an expansion of Hp.

Proof. Let ψ : QAp → QHp be defined in the following way:

ψ(s, E, γ) = (s, E′) where E′ = {γ−1(e) | e ∈ E}.

If entity e ∈ E is not referenced by any variable, then γ−1(e) = ∅. Thus, ∅ ∈
E′ and state ψ(s, E, γ) is unbounded. For state q ∈ QAp , let φq : Eq → E∅

ψ(q)

be defined as follows:
φ(s,E,γ)(e) = γ−1(e).

To show thatAp expandsHp we prove that φq fulfils conditions 1–6 of Def. 4.3.8:

1. If φ(s,E,γ)(e) = φ(s,E,γ)(e
′) 6= ∅, then γ−1(e) = γ−1(e′). Since γ is well

defined, it follows e = e′.

2. Straightforward, since if Xi ∈ Eψ(q), then there exists e such that Xi =
γ−1(e).

3. If ∅ /∈ Eψ(q) then, by definition of ψ, we have for all e ∈ E : e ∈ cod(γ).
Therefore, by definition of φq , we have for all e ∈ E : φq(e) 6= ∅.

5.+6. Follows directly, as the set of initial and final states for Hp and Ap are
identical.

It remains to prove the 4th condition:

a) any ψ(s1, E1, γ1) −→λ q
′
2 is expanded by some transition (s1, E1, γ1) −→

(s2, E2, γ2), and

b) any (s1, E1, γ1) −→ (s2, E2, γ2) is expanded by some ψ(s1, E1, γ1) −→λ

ψ(s2, E2, γ2) for some λ.

These statements are proved by induction on the structure of statement s1.
The base cases:

A.3 Proofs of Section 4.4 251

• case new(v). Let q1 = (new(v), E1, γ1) ∈ QAp . We have that ψ(q1) =
(new(v), Eψ(q1)). According to the symbolic semantics (cf. Table 4.4.3),
the only possible transition is

new(v), Eψ(q1) −→λ skip, E′ (A.6)

where E′ = {Xi\{v}|Xi ∈ Eψ(q1)} ∪ {{v}}. The only transition of q1 (cf.
Table 4.4.2) is

new(v), E1, γ1 −→ skip, E2, γ1{e/v} (A.7)

whereE2 =E1∪{e} and e /∈E1. For convenience, let q2 =skip, E2, γ1{e/v}.
We show that (A.7) expands (A.6). First, we observe that ψ(q2) =
(skip, Eψ(q2)) = (skip, E′), since:

Eψ(q2)

= {γ1{e/v}
−1

(e′)|e′ ∈ E1 ∪ {e}}

= {γ1{e/v}
−1

(e′)|e′ ∈ E1} ∪ {γ1{e/v}
−1

(e)}
= [since e /∈ E1]
{γ−1

1 (e′)\{v}|e′ ∈ E1} ∪ {{v}}
= {Xi\{v}|Xi ∈ Eψ(q1)} ∪ {{v}}
= E′.

Thus, ψ(skip, E1 ∪ {e}, γ1{e/v}) = (skip, Eψ(q2)) = (skip, E′). Next, we
need to check conditions (i) and (ii) of Def. 4.3.8. If e′ ∈ E1, we have:

φq2(idEq1∩Eq2
(e′))

= [since e′ ∈ Eq1 ⇒ e′ ∈ Eq2]
φq2(e

′)
= γ−1

1 {e/v}(e
′)

= [since e′ ∈ Eq1 ⇒ e′ 6= e]
γ−1
1 (e′)\{v}

= [by new’s rule in Table 4.4.3]
λ(γ−1

1 (e′))
= λ(φq1 (e

′)).

This proves (i). (ii) follows directly from the fact that for new in both Ta-
ble 4.4.3 and Table 4.4.2 only one new entity is created. Thus, transition
(A.7) expands (A.6).

It remains to check condition 4.b. As we have seen above, the only possible
transition q1 −→ q2 in the concrete model is (A.7). Furthermore, we have
ψ(new(v), E1, γ1) = (new(v), Eψ(q1)) and ψ(skip, E1 ∪ {e}, γ1{e/v}) =
(skip, Eψ(q2)) = (skip, E′) where E′ = {Xi\{v}|Xi ∈ Eψ(q1)} ∪ {{v}}.
Again, for s1 = new(v) the symbolic model prescribes only one transi-
tion, namely (A.6). As we have proved for case a), (A.7) expands (A.6).

• case v := w. Let q1 = (v := w,E1, γ1) ∈ QAp , and ψ(q1) = (v :=
w,Eψ(q1)). According to the rules of the symbolic model, ψ(q1) has only

252 Appendix A – Proofs of Chapter 4

one possible transition (cf. Table 4.4.3), i.e., we have

v := w,Eψ(q1) −→λ skip, E′ (A.8)

where E′ = {Xi\{v}|w /∈ Xi} ∪ {Xi ∪ {v}|w ∈ Xi}. For q1 there is only
one possibility (cf. Table 4.4.2):

v := w,E1, γ1 −→ skip, E1, γ1{γ1(w)/v}. (A.9)

We show that (A.9) expands (A.8):

Eψ(q2)

= {γ1{γ1(w)/v}−1
(e′)|e′ ∈ E1}

= {γ−1
1 (e′)\{v}|e′ ∈ E1\{γ1(w)}}∪

{γ−1
1 (γ1(w)) ∪ {v}}

= {Xi\{v}|w /∈ Xi} ∪ {Xi ∪ {v}|w ∈ Xi}
= E′.

Note that if there is at least another variable v′ 6= v referring to v’s en-
tity, then ψ(q2) remains bounded if ψ(q1) was bounded. If ψ(q1) was
unbounded, then ψ(q2) is unbounded. Now, we show that conditions (i)
and (ii) of Definition 4.3.8 are fulfilled. Note that e′ ∈ Eq1 ⇒ e′ ∈ Eq2 .
If e′ 6= γ1(w) then φq2(idEq1∩Eq2

(e′)) = φq2(e
′) = γ−1

1 {γ1(w)/v}(e′) =

γ−1
1 (e′)\{v} = λ(γ−1

1 (e′)) = λ(φq1 (e
′)). Similarly, if e′ = γ1(w) then

φq2(idEq1∩Eq2
(e′)) = φq2 (e

′) = γ−1
1 {γ1(w)/v}(e′) = γ−1

1 (e′) ∪ {v} =

λ(γ−1
1 (e′)) = λ(φq1 (e

′)). Note that there are no new entities both in
the concrete and in the symbolic model, therefore (ii) holds.

The proof of condition 4.b follows in a straightforward manner from the
above.

• case del(v). Let q1 =(del(v), E1, γ1)∈QAp and ψ(q1)=(del(v), Eψ(q1)).
According to the rule for del in Table 4.4.3 we have

del(v), Eψ(q1) −→λ skip, Eψ(q1)\{Xi}. (A.10)

where Xi = γ−1
1 (γ1(v)). In the concrete model we have

del(v), E1, γ1 −→ skip, E1\{γ1(v)}, γ1{⊥/v}. (A.11)

We show that there is correspondence between the target states of these
transitions.

Eψ(q2)

= {γ1{⊥/v}
−1

(e′)|e′ ∈ E1\{γ1(v)}}
= {γ−1

1 (e′)|e′ ∈ E1\{γ1(v)}}
= {γ−1

1 (e′)|e′ ∈ E1}\{γ
−1
1 (γ1(v))}

= Eψ(q1)\{Xi}.

A.3 Proofs of Section 4.4 253

We can conclude that indeed ψ(q2) = (skip, Eψ(q1)\{Xi}). We must now
show that conditions (i) and (ii) of Definition 4.3.8 hold. If e ∈ E1 and
e 6= γ1(v) then φq2(idEq1∩Eq2

(e)) = φq2 (e) = γ−1
1 {⊥/v}(e) = γ−1

1 (e) =

λ(γ−1
1 (e)) = λ(φq1 (e)). If e = γ1(v) then e /∈ E1 ∩ E2 therefore there is

nothing to prove because e /∈ dom(φq2 ◦ idEq1∩Eq2
) and e /∈ dom(λ ◦φq1).

Furthermore, there is no new entity after the transition in either symbolic
or the concrete model. Thus, we conclude that condition 4.a holds.

We prove condition 4.b for s1 = del(v). Consider the transition (A.11).
We have seen that ψ(q1) has only one possible transition, namely (A.10)
and we have proved that indeed the former transition is the expansion of
the latter one using λ as defined by rule for del of the symbolic model.
Hence we conclude that for the del(v) case, 4.b is fulfilled.

(Step) We only present the proof for sequential composition. The proofs for
the other cases are conducted in a similar way and are omitted here. The case
s = skip; s2 is trivial. Assume s = s1; s2 and q1 = s1; s2, E1, γ1 with s1 6= skip.
We prove that any transition

ψ(s1; s2, E1, γ1) −→λ s
′
1; s2, Eψ(q2) (A.12)

is expanded by transition s1; s2, E1, γ1 −→ q2. Transition (A.12) is only possible
if:

ψ(s1, E1, γ1) −→ s′1, Eψ(q2). (A.13)

By the induction hypothesis, there exists a transition s1, E1, γ1 −→ s′1, E2, γ2

that expands (A.13). Therefore, s1; s2, E1, γ1 −→ s′1; s2, E2, γ2, that exists by
the rules of Table 4.4.2, expands (A.12).

For condition 4.b, consider transition s1; s2, E1, γ1 −→ q2 in the concrete
semantics. By the rule for sequential composition in Table 4.4.2 there must
be a transition s1, E1, γ1 −→ s′1, E2, γ2. By the induction hypothesis, this ex-
pands transition ψ(s1, E1, γ1) −→λ s

′
1, Eψ(q2). Thus, s1; s2, E1, γ1 −→ q2 expands

ψ(s1; s2, E1, γ1) −→λ s
′
1; s2, Eψ(q2).

Proposition A.3.1. For all q ∈ QHp : |Eq | 6 |PVar|.

Proof. The set Eq is a partition of A ⊆ PVar. Thus, |Eq | 6 |A| 6 |PVar|.

Theorem 4.4.10 For any p ∈ L: Hp is finite state.

Proof. We show that

|QHp | 6 |smax|
m ·

1 + 2 ·

|PVar|∑

k=1

(
|PVar|

k

)
Bk

where Bk is the number of partitions of a set of k elements, |smax| the size of the
longest sequential statement in p and m the number of sequential components

254 Appendix A – Proofs of Chapter 4

of p. In fact, since we are interested in the partition of subsets of PVar that
solely consist of defined variables, Bk corresponds to the number of partitions
when k variables are defined. There are

(
|PVar|
k

)
different ways to choose k

distinct variables from the set PVar. Therefore, we have
(
|PVar|
k

)
Bk partitions

for k defined variables. Finally, we have to consider all possible k such that
0 < k 6 |PVar|. The constant 2 considers the possibility to have a bounded
or unbounded state. As all variables can be undefined (i.e., E = ∅), one has
to be added.

A.4 Proofs of Section 4.5

Lemma 4.5.3 L(H) = L(Hδ).

Proof. [L(H) ⊆ L(Hδ)] Let (σ,N, θ) ∈ L(H), with σ = E0λ0E1λ1 · · · . Let
ρ = q0λ0q1λ1 · · · be the run generating (σ,N, θ) by some generator (hi)i∈N.
We define a run ρ′ of Hδ that generates (σ,N, θ) in the following way. Let
ρ′ = q′0λ0q

′
1λ

′
1 · · · such that q′0 = (q0, h0(N)) and for all i ≥ 0, q′i+1 =

(qi+1, Eqi+1\cod(λi)). According to the definition of duplication, we have
q′i ∈ Q′ for i ≥ 0. Furthermore, since qi −→λi

qi+1 (i ≥ 0) then there ex-
ists a corresponding transition q′i −→λi

q′i+1 in Hδ . As q′0 is an initial state of
Hδ and for every accept state qi visited infinitely often, also the correspond-
ing accept state q′i is visited infinitely often, we conclude that ρ′ ∈ runs(Hδ).
Finally, since Eq′i = Eqi for all i > 0, and ρ′ has the same ∞-reallocations λi
as ρ, then the generator (hi)i∈N generates (σ,N, θ) also from run ρ′. Hence we
conclude that (σ,N, θ) ∈ L(Hδ).

[L(Hδ) ⊆ L(H)] Let (σ,N, θ) ∈ L(Hδ), with σ = E0λ0E1λ1 · · · , and let
ρ = q′0λ0q

′
1λ1 · · · be the run generating (σ,N, θ). We define ρ = q0λ0q1λ1 · · ·

such that for all i > 0, where q′i = (qi,Mi). Since ρ′ ∈ runs(Hδ) implies
ρ ∈ runs(H) and ρ′ generates (σ,N, θ) by a generator (hi)i∈N implies of ρ
generates (σ,N, θ) by the same (hi)i∈N, we conclude that (σ,N, θ) ∈ L(H).

Notation. Recall that

K(φ) = max{|fv (ψ)| | ψ ∈ CL(φ)} and

Ω(α) = |{a ∈ A | α(a) =∞}|.

Furthermore, note that since Ξ = dom(Θ) for all valuations (φ,Ξ,Θ), we can
drop the Ξ-component without loss of information. Finally, in the following,
from an arbitrary partial mapping θ : LVar ⇀ Ent we derive a partition-based
mapping partial [θ] : 2LVar ⇀ Ent as follows:

[θ] : X 7→ e if X = θ−1(e).

The following lemma is an auxiliary result needed for the proof of Prop 4.5.16.

A.4 Proofs of Section 4.5 255

Lemma A.4.1. For any path π = (q0, D0, k0)λ0(q1, D1, k1) · · · and for any
generator (hj)j∈N of allocation sequences generated by the underlying run ρ of
π:

k0 = min(K(φ),Ω(h0)) implies ∀j ∈ N : kj = min(K(φ),Ω(hj)).

Proof. By inductive argument, assume that kj = min(K(φ),Ω(hj)). By Defi-
nition 4.5.11, kj+1 = min(K(φ), kj + Ω(λj)). There are two cases. On the one
hand, if dqj+1e then trivially we have kj+1 =0=Ω(hj+1)=min(K(φ),Ω(hj+1)).

On the other hand, assume bqj+1c. Then kj+1 > 0 and we distinguish two
further cases:

• if kj = K(φ) then by inductive hypothesis Ω(hj) > K(φ) and kj+Ω(λj) >
K(φ) that in turn implies, together with bqj+1c that Ω(hj+1) > K(φ) and
kj+1 = K(φ). We conclude that kj+1 = min(K(φ),Ω(hj+1)).

• if kj = Ω(hj) < K(φ) then by Definition 4.5.11 and by inductive hy-
pothesis, kj+1 = min(K(φ), kj + Ω(λj)) = min(K(φ),Ω(hj) + Ω(λj)) =
min(K(φ),Ω(hj+1)), as every imploded entity is preserved in the transi-
tion.

Hence, we conclude that kj = min(K(φ),Ω(hi)) for all j > 0.

Lemma A.4.2. Let H be a HABA and φ an A``TL-formula. Let π =
(q0, D0, k0)λ0(q1, D1, k1)λ1 · · · be a path of GH(φ) with underlying run ρ =
q0λ0q1λ1 · · · , and let σ be an allocation sequence generated by ρ with genera-
tor (hj)j∈N, such that kj = min(K(φ),Ω(hj)) for all j > 0. Then for all i > 0,
ψ ∈ CL(φ) and θ : fv (ψ) ⇀ Ent :

σi, Nσ
i , θ |= ψ ⇐⇒ (ψ, hi ◦ [θ]) ∈ Di . (A.14)

Proof. First of all we prove that there exists an allocation sequence σ generated
by ρ with a generator (hj)j∈N such that kj = min(K(φ),Ω(hj)) for all j > 0.
By Lemma A.4.1, it is enough to show that there exists among the allocation
sequences generated by ρ, one with Ω(h0) = k0 (recall that k0 6 K(φ)). We
distinguish two cases:

• dq0e then k0 = 0 and ρ generates only one sequence (up to isomorphism),
i.e., precisely the one such that Ω(h0) = 0.

• bq0c then ρ generates every sequence with an arbitrary number of (initial)
imploded entities. Clearly, among these sequences there exists a σ such
that Ω(h0) = k0.

Now, we can prove the statement (A.14) by induction on the structure of
ψ.

256 Appendix A – Proofs of Chapter 4

Base of induction

• case ψ = x new.

[⇒] Suppose σi, Nσ
i , θ |= x new. This implies x ∈ dom(θ) and θ(x) = e

for some e ∈ Nσ
i . By definition of the generator, hi(e) ∈ Nqi ; therefore,

(x new, {x} 7→ hi(e)) ∈ Di by Defs. 4.5.5 and 4.5.8. Since [θ] = ({x} 7→ e)
we are done.

[⇐] Suppose (x new,Θ) ∈ Di where Θ = hi ◦ [θ]. It follows that x ∈ X ∈
dom(Θ) such that Θ(X) ∈ Nqi ; by the definition of generator and the
construction of [θ] it follows that θ(x) = h−1

i (Θ(X)) ∈ Nσ
i . Thus we have

σi, Nσ
i , θ |= x new.

• case ψ = (x = y).

[⇒] Suppose σi, Nσ
i , θ |= x = y. This implies x, y ∈ dom(θ) and θ(x) =

e = θ(y) for some e ∈ Eσi ; hence [θ] = ({x, y} 7→ e). We have two cases:

1. hi(e) 6=∞. By definition of AV qi , we have (x = y, {x, y} 7→ hi(e)) ∈
Di.

2. hi(e) =∞. Since K(φ) > K(ψ) = 2, it follows that

ki = min(K(φ),Ω(hi)) > 1.

Hence, by the definition of atoms (Definition 4.5.8), we have (x =
y, {x, y} 7→ hi(e)) ∈ Di.

[⇐] Suppose (x = y,Θ) ∈ Di with Θ = hi ◦ [θ]. It follows that dom(Θ) =
{{x, y}} and Θ({x, y}) = hi(θ(x)) = hi(θ(y)); hence x, y ∈ dom(θ) and
θ(x) = θ(y) (by the construction of [θ]). It follows that σi, Nσ

i , θ |= x = y.

Inductive step

• case ψ = ∃x.ψ′.

[⇒] Suppose σi, Nσ
i , θ |= ∃x.ψ

′. It follows that there exists an e ∈ Eσi
such that σi, Nσ

i , θ{e/x} |= ψ′. By general assumption (see Page 104),
x ∈ fv(ψ′) and hence dom(θ{e/x}) ⊆ fv(ψ′); hence by the induction
hypothesis, we have (ψ′,Θ′) ∈ Di such that Θ′ = hi ◦ [θ{e/x}]. Note that
x ∈

⋃
dom(Θ′). It is not difficult to check that, for Θ = Θ′ � fv (ψ),

Θ = {(X \ {x},Θ′(X)) | X ∈ dom(Θ′), X 6= {x}} = hi ◦ [θ]

(using in particular that x /∈ dom(θ)). It follows (by Definition 4.5.8 of
atoms) that (∃x.ψ′,Θ) ∈ Di.

[⇐] Suppose (∃x.ψ′,Θ) ∈ Di such that Θ = hi ◦ [θ]. This implies by the
definition of atom that ∃(ψ′,Θ′) ∈ Di where

1. Θ = Θ′ � (∃x.ψ′) (= {(X \ {x},Θ′(X)) | X ∈ dom(Θ′), X 6= {x}});

A.4 Proofs of Section 4.5 257

2. x ∈
⋃

dom(Θ′);

3. Ω(Θ′) 6 ki.

We now want to construct θ′ = θ{e/x}, in such a way that Θ′ = hi ◦
[θ′]. This boils down to choosing an appropriate e. There are three
possibilities, based on X ∈ dom(Θ′) such that x ∈ X :

– Θ′(X) 6=∞; then e = Θ′(X) is appropriate.

– X ⊃ {x}; then e = θ(y) for y ∈ X \ {x} is appropriate.

– Θ′(X) = ∞ and X = {x}. Then Ω(Θ′) = Ω(Θ) + 1, hence ki >
Ω(Θ) + 1. It follows that hi(e) = ∞ for some e /∈ cod(θ); this e is
appropriate.

By the induction hypothesis, it follows that σi, Nσ
i , θ

′ |= ψ′. But then
also σi, Nσ

i , θ |= ψ.

• case ψ = ¬ψ′.

[⇒] Suppose σi, Nσ
i , θ |= ¬ψ

′. This implies σi, Nσ
i , θ 2 ψ′. By the in-

duction hypothesis, it follows that (ψ′, hi ◦ [θ]) /∈ Di. But then (by the
definition of atom) (¬ψ′, hi ◦ [θ]) ∈ Di.

[⇐] Inverse to the above.

• case ψ = ψ1 ∨ ψ2.

[⇒] Suppose σi, Nσ
i , θ |= ψ1 ∨ ψ2. This implies either σi, Nσ

i , θ |= ψ1

or σi, Nσ
i , θ |= ψ2; w.l.o.g. assume the former. Let θ1 = θ � fv (ψ1);

it follows that also σi, Nσ
i , θ1 |= ψ1. By the induction hypothesis, we

have (ψ1,Θ1) ∈ Di for Θ1 = hi ◦ [θ1]. Now let Θ = hi ◦ [θ]. Due to
Ω(Θ) 6 fv (ψ) 6 K(φ), Ω(Θ) 6 Ω(hi) and ki = min(K(φ),Ω(hi)) we may
conclude that Ω(Θ) 6 ki. Since (as is easily checked) Θ1 = Θ � ψ1, we
may conclude (by the definition of atom) that (ψ1 ∨ ψ2,Θ) ∈ Di.

[⇐] Suppose (ψ1 ∨ ψ2,Θ) ∈ Di such that Θ = hi ◦ [θ]. By the definition
of atom, this implies either (ψ1,Θ �ψ1) ∈ Di or (ψ2,Θ �ψ2) ∈ Di; w.l.o.g.
assume the former. Again, it is not difficult to see that Θ � ψ1 = hi ◦ [θ1]
where θ1 = θ�fv (ψ1); hence by the induction hypothesis, σi, Nσ

i , θ1 |= ψ1.
But then also σi, Nσ

i , θ |= ψ1 and hence σi, Nσ
i , θ |= ψ1 ∨ ψ2.

• case ψ = Xψ′.

[⇒] Suppose σi, Nσ
i , θ |= Xψ′. It follows that σi+1, Nσ

i+1, λ
σ
i ◦ θ |= ψ′. By

the induction hypothesis, (ψ′,Θ) ∈ Di+1 such that Θ = hi+1 ◦ [λσi ◦ θ];
moreover, hi+1◦λ

σ
i = λi◦hi. Since λσi is injective, it follows that [λσi ◦θ] =

λσi ◦ [θ] and hence Θ = λi ◦hi ◦ [θ]. By the definition of transitions in the
tableau graph (Def. 4.5.11), we may conclude that (Xψ′,Θ) ∈ Di.

[⇐] Suppose (Xψ′,Θ) ∈ Di with Θ = hi ◦ [θ]. Due to the definition of
transitions in the tableau graph, we may conclude (ψ′, λi ◦ Θ) ∈ Di+1.

258 Appendix A – Proofs of Chapter 4

Note that (just as above) λi ◦Θ = hi+1 ◦ [λσi ◦ θ] and hence (due to the
induction hypothesis) σi+1, Nσ

i+1, λ
σ
i ◦ θ |= ψ′. It follows that σi, Nσ

i , θ |=
Xψ′.

• case ψ = ψ1 Uψ2. For this case we repeatedly use the following corre-
spondence, which holds for all j > i (provable by induction on j, using
the properties of the generator (hi)i∈N, see Def. 4.3.6):

λj−1 ◦ · · · ◦ λi ◦ hi ◦ [θ] = hj ◦ [λσj−1 ◦ · · · ◦ λ
σ
i ◦ θ] . (A.15)

[⇒] Suppose σi, Nσ
i , θ |= ψ1 Uψ2. It follows that there is a n > i such

that

1. σj , Nσ
j , λ

σ
j−1 ◦ · · · ◦ λ

σ
i ◦ θ |= ψ1 for all i 6 j < n;

2. σn, Nσ
n , λ

σ
n−1 ◦ · · · ◦ λ

σ
i ◦ θ |= ψ2.

By the induction hypothesis, and using (A.15), it follows that

1. (ψ1, λj−1 ◦ · · · ◦ λi ◦ hi ◦ [θ] � ψ1) ∈ Dj for all i 6 j < n;

2. (ψ2, λn−1 ◦ · · · ◦ λi ◦ hi ◦ [θ] � ψ2) ∈ Dn.

But then one can show (using the definition of atom) that also

(X(ψ1 Uψ2), λj−1 ◦ · · · ◦ λi ◦ [θ] � ψ1) ∈ Dj

for all i 6 j < n. (This is shown by induction starting at j = n− 1 and
going down to j = i.) We may conclude that, in all cases, (ψ1 Uψ2, hi ◦
[θ]) ∈ Di.

[⇐] Suppose (ψ1 Uψ2,Θ) ∈ Di with Θ = hi ◦ [θ]. By Definition 4.5.14
(condition 3) there exists an n > i such that (ψ2, λn−1 ◦ · · ·◦λi ◦Θ�ψ2) ∈
Dn. Let n be the smallest such; then it follows (due to Def. 4.5.8) that
(ψ1, λj−1 ◦ · · · ◦ λi ◦ Θ � ψ1) ∈ Dj for all i 6 j < n. (This is proved by
induction on j ∈ {i, . . . , n− 1}, using the fact that (ψ2, λj−1 ◦ · · · ◦ λi ◦
Θ � ψ2) /∈ Dj .) Using (A.15) we get

– σj , Nσ
j , λ

σ
j−1 ◦ · · · ◦ λ

σ
i ◦ θ |= ψ1 for all i 6 j < n;

– σn, Nσ
n , λ

σ
n−1 ◦ · · · ◦ λ

σ
i ◦ θ |= ψ2.

This implies σi, Nσ
i , θ |= ψ1 Uψ2.

Proposition 4.5.16. A path π in GH(φ) fulfils φ if and only if there exists
(φ,Θ) ∈ D0 (for some Θ) such that IH(q0) = Θ.

Proof. (only if) By definition, if π fulfils φ there exist a (σ,N, θ) generated
from the underling run ρ by a generator (hi)i∈N such that σ,N, θ |= φ and

A.4 Proofs of Section 4.5 259

k0 = min(K(φ),Ω(h0)). By Lemma A.4.2, (φ, h0 ◦ [θ]) ∈ D0. Furthermore, we
have h0 ◦ [θ] = h0 ◦ θ = IH(q0).

(if) By Lemma A.4.2, taking the triple (σ,N, θ) generated by (hi)i∈N such
that k0 = min(K(φ),Ω(h0)) if (φ,Θ) ∈ D0 with IH(q0) = h0 ◦ θ = h0 ◦ [θ] = Θ
then σ,N, θ |= φ. The existence of the right allocation sequence with the right
number of initial imploded entities is explicitly proved. Thus, φ is satisfiable.
Since (σ,N, θ) is generated by the underling run of π and the condition on k0

is satisfied, by definition it follows that π fulfils φ.

Proposition 4.5.17. φ is H-satisfiable if and only if there exists a path in
GH(φ) that fulfils φ.

Proof.

[⇐] If there exists π in GH(φ) that fulfils φ, by definition this implies that
φ is satisfied by an allocation triple (σ,N, θ) generated by the underlying
run of π.

[⇒] Now assume that φ is H-satisfiable, and let ρ = q0λ0q1λ1 · · · be a run
generating a triple (σ,N, θ) with generator (hi)i∈N such that σ,N, θ |= φ.
We construct a path π = (q0, D0, k0) λ0 (q1, D1, k1) λ1 · · · that fulfils φ.
For all i ∈ N let

Di = {(ψ, hi ◦ [θ]) | ψ ∈ CL(φ), σi, Nσ
i , θ |= ψ}

and
ki = min(K(φ),Ω(hi)).

It can be proved (by induction on the structure of the formulae in CL(φ))
that the Di and ki satisfy the conditions of Definition 4.5.8 i.e., (qi, Di, ki)
is an atom for all i ∈ N. We show that π is a path by proving that the
conditions of Definition 4.5.14 are satisfied by π. Since π then fulfils φ
by construction, we are done.

1. By the construction of π.

2. By contradiction. Assume that there exists an i > 0 such that
(qi, Di, ki) −→λi

(qi+1, Di+1, ki+1) is not a transition of G. Take the
least such i. Then one of the following must hold:

i) qi −→λi
qi+1 is not a transition in H. But this contradicts the

fact that ρ is a run of H.

ii) there exists (Xψ,Θ) ∈ Di such that (ψ, λi ◦Θ) /∈ Di+1. By the
properties of the generator we have that λi ◦Θ = hi+1 ◦ [λσi ◦ θ]
(see also (A.15)); hence this would imply σi+1, Nσ

i+1, λ
σ
i ◦ θ 2 ψ.

But then also σi, Nσ
i , θ 2 Xψ, contradicting the construction of

Di.

260 Appendix A – Proofs of Chapter 4

If (ψ, λi ◦ Θ) ∈ Di+1, but (Xψ,Θ) /∈ Di then again for the
properties of the generator, σi+1, Nσ

i+1, λ
σ
i ◦ θ |= ψ and by the

semantics of A``TL, σi, Nσ
i , θ |= Xψ. Thus by definition of D

we must have (Xψ,Θ) ∈ Di. Contradiction.

iii) ki+1 6= min(K(φ), ki + Ω(λi)). Since Ω(hi+1) = Ω(hi) + Ω(λi),
this is also contradictory.

3. Assume (ψ1 Uψ2,Θ) ∈ Di. By the construction of Di, σ
i, Nσ

i , θ |=
ψ1 Uψ2 and Θ = hi◦[θ]. Therefore σj , Nσ

j , λ
σ
j−1◦· · ·◦λ

σ
i ◦θ�fv(ψ2) |=

ψ2 for some j > i. Due to (A.15) and the construction of Dj , it
follows that (ψ2, λj−1 ◦ · · · ◦ λi ◦Θ � ψ2) ∈ Dj .

Proposition 4.5.20. If π is fulfilling path in GH(φ), then Inf (π) is a self-
fulfilling SCS of GH(φ).

Proof. Let G′ = Inf (π). G′ is strongly connected. From the definition of
infinite set it follows that there exists i > 0 such that the atoms in πi =
(qi, Di, ki)λi(qi+1, Di+1, ki+1)λi+1 · · · are precisely those in G′. Furthermore,
if there is an atom A ∈ G′ such that (ψ1 Uψ2,Θ) ∈ DA, then there exists
j > i : (qj , Dj , kj) = A. By condition 3 of Def. 4.5.14 we have that there exists
n > j such that (ψ2, λn−1 ◦ · · · ◦λj ◦Θ �ψ2) ∈ Dn. But then (qn, Dn, kn) ∈ G′,
hence G′ is self-fulfilling.

Proposition 4.5.21. Let G′ ⊆ GH(φ) be self-fulfilling SCS such that

• there exists a fulfilling prefix of G′ starting at an initial atom A with
(φ,Θ) ∈ DA such that IH(qA) = Θ;

• for all F ∈ FH : F ∩ {qB |B ∈ G′} 6= ∅;

Then there exists a path π in GH(φ) that fulfils φ and such that Inf (π) = G′.

Proof. Satisfaction of an until-valuation. In a (finite or infinite) transition
sequence through GH(φ), say A0 −→λ0

A1 −→λ1
· · · , we call an until-valuation

v = (ψ1 Uψ2,Θ) ∈ DA0 satisfied at Ai (or just satisfied) if (ψ2, λi−1 ◦ · · · ◦ λ0 ◦
Θ � ψ2) ∈ DAi .

Observation. Due to the properties of atoms and of transitions in GH(φ),
if v is not satisfied at any Aj with j 6 i, then it follows that (ψ1 Uψ2, λj−1 ◦
· · · ◦ λ0 ◦ θ) ∈ DAj .

By the properties assumed for GH(φ), there exists a sequence

π1 = A0λ0 · · ·λm−1Am

such that A = A0, Ai −→λi
Ai+1 for all 0 6 i < m, and Am = B is a node of

G′. Furthermore, starting from B it is possible to construct a finite transition
sequence

B = B0 −→µ0
B1 −→µ1

· · · −→µi−1
Bi

A.4 Proofs of Section 4.5 261

in which all (ψ1 Uψ2,Θ) ∈ DB are satisfied, in the above sense. The ex-
istence of such a transition sequence can be proved by contradiction: sup-
pose that the minimal number of until-valuations (ψ1 Uψ2,Θ) ∈ DB that re-
main unsatisfied in any finite fragment starting at B0 is u (> 0); take an
optimal transition sequence that leaves u until-valuations unsatisfied, and let
(ψ1 Uψ2,Θ) ∈ DB be one of the unsatisfied ones. As observed above, it follows
that v′ = (ψ1 Uψ2, µi−1 ◦ · · · ◦µ0 ◦Θ) ∈ DBi . However, due to the fact that G′

is self-fulfilling, there is a transition sequence

Bi −→µi
· · · −→µn−1

Bn

that satisfies v′, i.e., such that (ψ2, µn−1 ◦ · · · ◦ µi ◦ · · · ◦ µ0 ◦ Θ � ψ2) ∈ DBn .
But then the combined sequence starting at B0 and going through Bi to Bn
leaves at most u− 1 until-valuations of B0 unsatisfied; contradiction.

We extend this finite transition sequence to a cycle

π2 = B0λ0B1λ1 · · ·λn−1Bn

with Bn = B0, that visits all nodes of G′ (note that π2 exists because G′ is
strongly connected).

Let π = π1·πω2 . We show that π is an allocation path. Since (by assumption)
(φ,Θ) ∈ DA such that IH(qA) = Θ it then follows (by Prop. 4.5.16) that π
fulfils φ. Since clearly Inf (π) = G′ we are then done.

For this purpose we show that the conditions of Def. 4.5.14 hold.

1. Let ρ = q0λ0q1λ1 · · · be the underlying run of π. Note that for all i < n
and for all k ∈ N, qm+i+n∗k = qBi . We show that ρ is a run of H.

q0 ∈ dom(IH) is guaranteed by assumption on A; furthermore, qi −→λi

qi+1 by construction of the graph GH(φ). Finally, take an arbitrary
F ∈ FH. By the assumption in the proposition, we have that qB ∈ F for
some B ∈ G′; hence B = Bi for some i < n. Since then qm+i+k∗n = qB
for all k ∈ N, qB is visited infinitely often by ρ.

2. By construction of π.

3. Assume v = (ψ1 Uψ2,Θ) is in one of the atoms in π. We have to show
that v is satisfied somewhere during the sequence. We distinguish three
cases:

• If v ∈ DAi for i < m then either (ψ2, λj−1 ◦ · · · ◦ λi ◦Θ � ψ2) ∈ DAj

for some i 6 j < m, or (ψ1 Uψ2, λm−1 ◦ · · · ◦ λi ◦ Θ) ∈ DB0 . The
latter case is dealt with below.

• If v ∈ DBi for 0 < i < n, then either (ψ2, λj−1◦· · ·◦λi◦Θ�ψ2) ∈ DBj

for some i 6 j < n, or (ψ1 Uψ2, λn−1 ◦ · · · ◦ λi ◦ Θ) ∈ DB0 . The
latter case is dealt with below.

• Otherwise, v ∈ DB0 . Due to the construction of π, v is satisfied in
one of the Bi (0 6 i < n).

262 Appendix A – Proofs of Chapter 4

Theorem 4.5.22. For any HABA H and formula φ, it is decidable whether
or not φ is H-satisfiable.

Proof. By Propositions 4.5.16 and 4.5.17, in order to prove that φ is H-satisfi-
able, it is necessary and sufficient to search in the graph GH(φ) for a fulfilling
path π. By Propositions 4.5.21, it is necessary and sufficient to check only for
a self-fulfilling SCS that has a fulfilling prefix whose initial atom (q0, D0, k0)
contains (φ,Θ) for some Θ such that Θ = IH(q0) and has a non-empty inter-
section with every set of final states. Since SCS are finite objects and there are
only a finite number of them, this search can be effective and exhaustive.

B

Proofs of Chapter 5

B.1 Proofs of Sections 5.3 and 5.4

Proposition 5.3.16 Let γ1 and γ2 be two configurations. If γ1�−
h−→γ2 then

γ1 =
λ
� γ2 where let e ∈ Eγ1 and e′ ∈ Eγ2 :

λ(e, e′) =

{
Cγ1(e) if e′ = h(e)
0 otherwise.

Proof. It is enough to prove that λ satisfies each of the conditions of Defini-
tion 5.3.12.

1. This condition is trivially satisfied since h is a morphism and therefore a
function. Thus the complete cardinality of an entity e is transferred to
h(e).

2. Follows by condition 4m of Definition 5.3.3.

3. Straightforward since h is a function.

4. Straightforward since λ(e) contains only one element.

5. Straightforward from 1m of Definition 5.3.3.

263

264 Appendix B – Proofs of Chapter 5

Lemma 5.3.19 If γ1 =
λ
� γ2 and γ′1 =

λ′

=� γ′2 and λ′ � λ via h1 and h2 then:

a) Eγ′
2
\cod(λ′) = h−1

2 (Eγ2\cod(λ))

b) E∗
γ2 ⊆ cod(λ).

Proof.

a) we prove part a) by showing the two set inclusions.

’⊆’ Let e ∈ Eγ2\cod(λ′), by condition 4 of Definition 5.3.17 we have
Cγ2(h2(e)) 6= ∗. By contradiction assume h2(e) ∈ cod(λ), this im-
plies that there exists e1, . . . , ek ∈ Eγ1 (k > 0) such that

λ(e1, h2(e))⊕ · · · ⊕ λ(ek, h2(e)) = Cγ2(h2(e)) 6= ∗

By condition 2 of � we have:

◦
∑

e1,h2(e)=(h1(e′1),h2(e′2)) λ
′(e′1, e

′
2)⊕ · · ·

· · · ⊕ ◦
∑
ek ,h2(e)=(h1(e′

k
),h2(e′2)) λ

′(e′k, e
′
2) = Cγ2(h2(e)) 6= ∗

But since Cγ2(h2(e)) 6= ∗ there must be e′ ∈ h−1
1 ({e1, . . . , ek})

such that λ(e′, e) 6= 0 otherwise the sum could not be precisely
Cγ2(h2(e)) 6= ∗. Therefore e ∈ cod(λ′) that contradict our initial
hypothesis.

’⊇’ Let e ∈ h−1
2 (Eγ2\cod(λ)) we prove that e ∈ Eγ2\cod(λ′). To this end

assume e ∈ cod(λ′) then there exists e′ 6= ⊥ such that λ(e′, e) = 1.
This implies by condition 2 of definition � that λ(h1(e

′), h2(e)) >
λ(e′, e) = 1. Hence h2(e) ∈ cod(λ) that is impossible since we have
assumed e ∈ h−1

2 (Eγ2\cod(λ)).

b) Let e ∈ E∗
γ2 . By condition 4 of Definition 5.3.17 we have h−1

2 (e) ⊆
cod(λ′). Hence, by part a) of the lemma we can conclude that e ∈ cod(λ).

Lemma 5.3.20 (� transitivity). Let q1 =
λ
� q2, q

′
1 =

λ′

=� q′2 and q′′1 =
λ′′

=� q′′2 .
Then:

(λ′′ � λ′ ∧ λ′ � λ) ⇒ λ′′ � λ.

Proof. By Definition 5.3.17 the following morphisms exist:

q′1�−
h1−−→q1, q′2�−

h2−−→q2, q′′1�−
h′
1−−→q′1, q′′2�−

h′
2−−→q′2.

Therefore by the properties of composition of morphisms we have q′′1�−
h′′
1−−→q1

and q′′2�−
h′′
2−−→q2 defined as

h′′1 = h′1 ◦ h1

h′′2 = h′2 ◦ h2.

B.1 Proofs of Sections 5.3 and 5.4 265

Thus the first condition of Definition 5.3.17 for λ′′ � λ is satisfied.
For the second condition, first of all observe that by definition, q′1, q

′
2 and q′′1

and q′′2 are concrete states since reallocations λ′ and λ′′ are concretions. This
implies that h′1 and h′2 are bijective. Let e1 ∈ Eq1 and e2 ∈ Eq2 , we have:

λ(e1, e2) : 7→ ◦
∑

(e1,e2)=(h1(e′1),h2(e′2))
λ′(e′1, e

′
2) [by hp: λ′ � λ]

7→ ◦
∑

(e1,e2)=(h1(h′
1(e

′′
1)),h2(h′

2(e
′′
2))) λ

′′(e′′1 , e
′′
2) [by hp: λ′′ � λ′ and

h′1, h
′
2 bijective]

7→ ◦
∑

(e1,e2)=(h′′
1 (e′′1),h′′

2 (e′′2)) λ
′′(e′′1 , e

′′
2) [by def. h′′1 , h′′2].

Hence also the second condition of Definition 5.3.17 holds for λ′′
� λ.

For the condition (No-Cross), we first observe that:

h′′1 (e′′1) = h′′1(e′′2) ∨ h′′2(λ′′(e′′1)) = h′′2(λ′′(e′′2)) [by def. of h′′1 , h
′′
2]

⇒ h1(h
′
1(e

′′
1)) = h1(h

′
1(e

′′
2)) ∨

h2(h
′
2(λ

′′(e′′1))) = h2(h
′
2(λ

′′(e′′2))) [by (No-Cross) of λ′]

⇒ (h′1(e
′′
1) ≺q′1 h

′
1(e

′′
2) ⇐⇒ λ′(h′1(e

′′
1)) ≺q′2 λ

′(h′1(e
′′
2))) (B.1)

Now, note that since λ′′ �λ′, for the second property of concretion and the bi-
jectivity of h′1, h

′
2, we have λ′(h′1(e

′′
1), h′2(λ

′′(e′′1))) = λ′′(e′′1 , λ
′′(e′′1)) = 1. There-

fore:
λ′(h′1(e

′′
1)) = h′2(λ

′′(e′′1)) (B.2)

In Figure B.1 this corresponds to say that the front-low part of the diagram
commutes. Hence, assume h′′1(e′′1) = h′′1(e′′2) ∨ h′′2(λ′′(e′′1)) = h′′2(λ′′(e′′2)), we
have:

e′′1 ≺q′′2 e
′′
2 [q′1 concrete and Def. 5.3.3 3m]

⇒ h′1(e
′′
1) ≺q′1 h

′
1(e

′′
2) [by (B.1)]

⇒ λ′(h′1(e
′′
1)) ≺q′2 λ

′(h′1(e
′′
2)) [by (B.2)]

⇒ h′2(λ
′′(e′′1)) ≺q′2 h

′
2(λ

′′(e′′2)) [by Def. 5.3.3 2m]
⇒ λ′′(e′′1) ≺q′′2 λ

′′(e′′2)

Vice-versa:

λ′′(e′′1) ≺q′′2 λ
′′(e′′2) [q′2 concrete and Def. 5.3.3 3m]

⇒ h′2(λ
′′(e′′1)) ≺q′2 h

′
2(λ

′′(e′′2)) [by (B.2)]
⇒ λ′(h′1(e

′′
1)) ≺q′2 λ

′(h′1(e
′′
2)) [by (B.1)]

⇒ h′1(e
′′
1) ≺q′2 h

′
1(e

′′
2)

⇒ e′′1 ≺q′′2 e
′′
2

Therefore also condition (No-Cross) holds for λ′′ � λ. Finally, for condition 4,
let e ∈ Eq′′2 . If Cq2(h2(e)) = ∗ then Cq2(h2(h

′
2(e))) = ∗ and because λ′�λ (using

condition 4) if follows h′2(e) ∈ cod(λ′) that finally implies (by λ′′ � λ′ applying
in particular condition 2) e ∈ cod(λ′′). Since also condition 4 is satisfied we
conclude that λ′′ � λ.

266 Appendix B – Proofs of Chapter 5

e′′1

e′′2

λ′′(e′′1)

λ′(e′1)

λ′(e′2)

λ′′(e′′2)

λ′′

λ′′

h′
2

h2

h1

h′
1

h′
1

h1

h2

λ′

h′
2

λ′

e2

e1

e′1

e′2

λ

Figure B.1: Transitivity of concretions: λ′′ � λ′ � λ.

Theorem 5.4.5 If H v H′ then L(H) ⊆ L(H′).

Proof. Let (σ,N, θ) ∈ L(H). Then there exists a run ρ = q0λ0q1λ1 · · · such
that ρ generates (σ,N, θ) via a generator (hi)i∈N. Since H v H′ there exists
q′0 ∈ IH′ such that q0 vh′

0
q′0 and moreover for all i > 0 there exists h′i : qi�−→q′i

and λ′i such that:

i) qi −→λ′
i
qi+1 and qi+1 vhi+1 q

′
i+1

ii) λi � λ′i via h′i, h
′
i+1;

Consider the sequence:
ρ′ = q′0λ

′
0q

′
1λ

′
1 · · ·

where if qi ∈ F ∈ F , then we take — among all states that simulate qi — an
accept state in H′ that satisfies condition 2.b) of Definition 5.4.1, i.e., q′i ∈ ψ(F)
(where ψ is the bijective function described in that condition). Since ρ is
an accepting run of H, and because of the choice of the accept states on ρ′

described above, then also ρ′ is an accepting run of H′.
Hence, in order to prove that (σ,N, θ) ∈ L(H′) we show that it is generated

by ρ′ by some generator (h′′i)i∈N. This corresponds to prove the existence of
such generator. For all i ∈ N, let

h′′i = h′i ◦ hi.

Since h′′i is the composition of two morphisms it is a morphism by Proposi-
tion 5.3.7. We show that h′′i satisfies condition (1)-(4) of Definition 5.3.24.

1. since λσi � λi � λ′i then by Lemma 5.3.20 it follows λσi � λ′i via h′′i and
h′′i+1.

B.2 Proofs of Section 5.5 267

2. By definition of simulation we have I(q′0) = (N ′, h0 ◦ θ′) where I(q0) =
(h−1

0 (N ′), θ′) and by definition of generator N = (h′0)
−1(N). Therefore

N = (h′′0)−1(N ′) and I(q′0) = (N ′, h′′0 ◦ θ). But then h′′0 that satisfy
condition 2 of the definition of generator.

Hence (h′′i)i∈N is a generator from which it follows (σ,N, θ) ∈ L(H′).

B.2 Proofs of Section 5.5

Proposition 5.6.14 If a state γ is L-canonical then:

a) γ is PV -reachable;

b) for every state γ ′, if there exists a morphism h : γ�−→γ ′ then either
γ ∼= γ′ or γ′ is L-unsafe.

Proof.

a) Let us partition Eγ in two parts: the set EPV
γ of PV -reachable entities

and the set E¬PV
γ given by all the entities not reachable by any program

variable. It is clear that E¬PV
γ ∪ EPV

γ = Eγ and E¬PV
γ ∩ EPV

γ = ∅.

By contradiction assume γ is not PV -reachable, i.e., E¬PV
γ 6= ∅ and

let e ∈ E¬PV
γ . By the properties of L-compactness (that must be satis-

fied by γ since it is L-canonical), since e is unreachable we have that
indegree(e) > 1, i.e., there exists at least e′, e′′ such that µγ(e

′) =
µγ(e

′′) = e. Furthermore, it must be e′, e′′ ∈ E¬PV
γ otherwise we would

have e ∈ EPV
γ that would contradict our original hypothesis. Hence, we

can construct the following infinite series of sets:

A0 = {e}

Ai+1 = {e′ | µγ(e′) ∈ Ai}.

It can be proved by induction on i that

∀i ∈ N : Ai ⊆ E
¬PV
γ . (B.3)

This implies the following statement (by set theory)
⋃

i∈N

Ai ⊆ E
¬PV
γ . (B.4)

However, since every entities has only one outgoing reference, it can be
also proved by induction, that for all i ∈ N we have:

⋃

06j6i

Aj ⊂
⋃

06j6i+1

Aj .

Therefore, |
⋃
i∈N

Ai| = ω that together with (B.4) implies both E¬PV
γ

and Eγ are infinite. But this is impossible since in every state there is
only a finite number of live entities.

268 Appendix B – Proofs of Chapter 5

b) Let γ′ be a state such that γ�−h−→γ′. We distinguish two cases:

– h is not contractive. Then h must be an isomorphism by Proposi-
tion 5.6.3.

– h is contractive. Therefore there exists e′ ∈ Eγ′ such that |h−1(e′)| >
1, i.e., the pure chain h−1(e′) that has more than one entity is con-
tracted in e′. Since γ is L-compact, there exists ev ∈ PV such that
d(ev , last(h

−1(e′))) 6 L + 1, i.e., the last entity of the pure chain
cannot be distant more than L+ 1 from some program variable (in
this case ev). But, this implies that d(ev,first(h−1(e′))) 6 L. We
have that

d(h(ev), e
′) 6 L (B.5)

(the inequality is strict if h is also contracting for some other e′′ pre-
ceding e′ or if more than two entities are mapped onto e′). However,
|h−1(e′)| > 1 implies C(e′) > 1 that together with (B.5) violates the
L-safeness condition for e′ since h(ev) ∈ PV (cf. condition (5.11)).
Therefore γ′ is L-unsafe.

Proposition 5.6.15 Let γ1 and γ2 be a PV -reachable and a L-canonical
configurations, respectively. If h1 : γ1�−→γ2 and h2 : γ1�−→γ2 then h1 = h2.

Proof. Since γ1 and γ2 are PV -reachable, if e ∈ Eγ1 then there exists ev ∈
PV such that µnγ1(ev) = e for some n ≥ 0. According to Definition 5.6.4,
the number n is the distance between ev and e and we denote it by d(ev , e).
Therefore we can define the shortest distance from all the program variables:
d(PV , e) = min {d(ev, e) 6= ⊥ | ev ∈ PV }. Now, we prove:

∀e ∈ Eγ1 : h1(e) = h2(e) (B.6)

by induction on the distance d(PV , e).

• Base case d(PV , e) = 0. That is e ∈ PV . By the global constraint
(5.11) on page 155 we have h1(e) = h2(e).

• Inductive case d(PV , e) = n + 1. By contradiction assume h1(e) 6=
h2(e). Since γ1 is PV -reachable, there exists e′ ≺1 e. By condition 3m
of Definition 5.3.3 this implies that h1(e

′) �2 h1(e) and h2(e
′) �2 h2(e).

We have four different cases:

1. h1(e
′) ≺2 h1(e) and h2(e

′) ≺2 h2(e)

2. h1(e
′) =2 h1(e) and h2(e

′) ≺2 h2(e)

3. h1(e
′) ≺2 h1(e) and h2(e

′) = h2(e)

4. h1(e
′) = h1(e) and h2(e

′) = h2(e)

B.2 Proofs of Section 5.5 269

Case 1 implies h1(e
′) 6= h2(e

′) because for every entity there exists only
one outgoing reference. But this is a contradiction since, d(PV , e′) = n,
thus, by induction hypothesis, h1(e

′) = h2(e
′).

Case 4 implies by induction hypothesis, h1(e) = h1(e
′) = h2(e

′) = h2(e)
that again is a contradiction because we have assumed h1(e) 6= h2(e).

Finally, the more involved cases are 2 and 3. We prove 2 since 3 is
symmetrical and can be shown precisely in the same way. Since h1(e

′) =
h1(e) and h2(e

′) ≺2 h2(e) and by induction hypothesis h1(e
′) = h2(e

′),
we have Cγ2(h1(e

′)) = ∗ because, one morphism maps on it both e, e′

whereas the other only one. Moreover {e′, e} must be a pure chain since
h1 maps this set in the same entity. In turn, this implies

{h2(e
′), h2(e)} is a pure chain (B.7)

because being a morphism h2 maps pure chains onto pure chains. More-
over, since γ2 is L-canonical, h1(e

′) is at a distance at least L + 1 from
every program variables otherwise γ2 would be not L-safe. But since
h1(e

′) = h2(e
′) and h2(e

′) ≺2 h2(e) then {h2(e
′), h2(e)} is not a pure

chain otherwise L-compactness would be violated. But this contradicts
(B.7).

Theorem 5.6.16 (Existence of the canonical form). For every L-safe
and PV -reachable configuration γ there exists an L-canonical configuration γ ′

and a unique morphism h : γ�−→γ ′.

Proof. If γ is L-compact, then it is L-canonical by definition, and we can take
h = idγ .

Assume then that γ in not L-compact, we construct a L-compact γ ′ out of
γ. Since γ is not L-compact then by definition:

∃e ∈ Eγ : (indegree(e) = 1 ∧ ∀e′ ∈ PV : d(e′, e) > L+ 1). (B.8)

In other words entities satisfying (B.8) form pure chains distant more than
L+1 from every program variable. Let C1, . . . , Cn ⊆ Eγ be all such chains. In
the construction of γ ′, we need to exclude them. Let:

Eγ′ = (Eγ\(C1 ∪ · · · ∪ Cn)) ∪ {first(C1), . . . ,first(Cn)}

µγ′ = (µγ �Eγ\(C1 ∪ · · · ∪ Cn)) ∪ {(first(Ci), µγ(last(Ci))) | 1 6 i 6 n}

Cγ′(e) =

{
Cγ(e) if e ∈ Eγ\(C1 ∪ · · · ∪ Cn)
◦
∑

e′∈Ci
Cγ(e′) if e = first(Ci).

270 Appendix B – Proofs of Chapter 5

γ′′

id h2

γ

γ′

λ

h1

γ′′′

Figure B.2: Diagram of Proposition 5.6.20.

Hence, γ′ = (Eγ′ , µγ′ , Cγ′) is L-compact by construction since every pure chain
violating the L-compactness condition in γ has been collapsed in the first entity
of the chain itself. Note that γ ′ is L-safe since γ is L-safe and the compacted
chains are those in γ that are distant more than L+ 1 from the program vari-
ables, therefore, the multiple, unbounded entities that substitute these chain
in γ′ are still at a distance at least L + 1. We conclude that γ ′ is indeed
L-canonical.

We construct now, a morphism h : γ�−→γ ′. For e ∈ Eγ and 1 6 i 6 n let:

h(e) =

{
e if e ∈ Eγ\(C1 ∪ · · · ∪ Cn)
first(Ci) if e ∈ Ci.

As expected, h corresponds to id on those entities that do not violate compact-
ness, otherwise h collapses the pure chains C1, . . . , Cn into their corresponding
first elements. It can be shown that h is a morphism. In fact, by construction
h satisfies condition 1m-4m of the Definition 5.3.3. Note that requiring γ to be
PV -reachable is essential for the existence of h.

Finally, to complete the proof, we show that h is unique (up to isomor-
phism). To this end, consider a generic morphism h′ : γ�−→γ′. Since γ PV -
reachable by hypothesis of this theorem, and γ ′ is L-canonical by construction,
we can conclude by Proposition 5.6.15 that h = h′. Therefore, h is unique.

In the following lemma we prove that we can complete the diagram reported
in Figure B.2 by a reallocation γ.

Proposition 5.6.20 Let γ and γ ′′′ be two L-canonical states. If γ =
id
=�

γ′ −h1−←−≺ γ′′�−h2−−→γ′′′ such that

(a) ∀e ∈ Eγ′′′ : id−1(h1 ◦ h
−1
2 (e)) ⊆ E⊥

γ is a chain and

(b) Cγ′′′(e) = ∗ ⇒ ⊥ /∈ id−1(h1 ◦ h
−1
2 (e)).

Then γ =
λ
� γ′′′ where:

λ = {(e1, e2, Cγ′′(h−1
1 (e1) ∩ h

−1
2 (e2))) | e1 ∈ Eγ} ∪

{(e,⊥, Cγ(e)) | e ∈ Eγ\Eγ′} ∪

{(⊥, e, Cγ′′′(e)) | e ∈ Eγ′′′ ∧ h1 ◦ h
−1
2 (e) ∩ Eγ = ∅}.

B.2 Proofs of Section 5.5 271

Proof. We show that λ satisfies all the condition of Definition 5.3.12.

1. First of all note that γ =
id
=� γ′ and therefore Cγ �Eγ∩Eγ′ = Cγ′ �Eγ∩Eγ′ .

Let e1 ∈ Eγ ∩ Eγ′ , we have C(e1) = Cγ′(e1) = Cγ′′(h−1
1 (e1)) by definition

of morphism. Every element of h−1
1 (e1) is then remapped by h2 to the

corresponding entities in λ(e1). Therefore

Cγ(e1) = Cγ′′(h−1(e1))

= ◦
∑

e2∈Eγ′′′
◦
∑
e1=h1(e),e2=h2(e)

Cγ′′(e)

= ◦
∑

e2∈Eγ′′′
λ(e1, e2)

For e1 ∈ Eγ′\Eγ we can show the correspondence of the cardinality by the
same argument. For e1 ∈ Eγ\Eγ′ the correspondence of the cardinality
is ensured since λ is defined as id that is a reallocation.

2. Similar to 1.

3. Let e ∈ Eγ and A = {e′ | λ(e, e′) = ∗}. By contradiction, assume |A| > 1,
then there exist e1, e2 ∈ A with Cγ′′′(e1) = Cγ′′′(e2) = ∗. |A| > 1 implies
that e is split in more than one entity during the transition. However, id
precedes the application of morphism therefore, the splitting of e (that
can only happens by h1) must happen after any change in the topology of
γ performed by id . Hence h2 ◦h

−1
1 (e) must be a chain containing at least

e1 and e2. In order to prove the statement it is enough to consider the
case where h2 ◦ h

−1
1 (e) is only composed of e1 and e2 and we can either

have e1 ≺γ′′′ e2 or e2 ≺γ′′′ e1. Without loss of generality, assume e1 ≺ e2
(the other case is symmetric and can be proved in the same way). By
hypothesis γ′′′ is compact, therefore by definition of L-safeness we have

∀ev ∈ PV : d(ev , e1) > L ∧ d(ev , e2) > L (B.9)

and by the hypothesis e1 ≺γ′′′ e2 we have

d(ev , e2) > d(ev , e1) > L. (B.10)

Moreover, by definition of L-compactness we have

indegree(e2) > 1 ∨ ∃ev′ ∈ PV : d(ev′ , e2) 6 L+ 1. (B.11)

We distinguish the two cases:

• if ∃ev′ ∈ PV : d(ev′ , e2) 6 L + 1 then by (B.10) we have L <
d(ev , e1) < d(ev, e2) 6 L+ 1, which is a contradiction.

• indegree(e2) > 1 is also impossible since the rearrangement of links
takes place before splitting, therefore h2 ◦ h

−1
1 (e) is a pure chain by

definition of morphism, and indegree(e2) = 1.

272 Appendix B – Proofs of Chapter 5

γx

γc
trg

γ′

γs
trgγs

src

γc
src

h0 h2

hcf

hc
x

hx

id

λ

id

h0

1

4

2

3

Figure B.3: Interdependence among morphisms and reallocations in the assign-
ment rule.

The second part of this condition, i.e., |{e′ ∈ Eγ′′′ | λ(⊥, e′) = ∗}| = 0
follows in a straightforward manner from hypothesis (b).

4. If Cγ(e) = 1, then e can be reallocated only on a single entity that is
a chain by definition. Otherwise if Cγ(e) 6= 1 then e can be reallocated
in more than one entity. Nevertheless, e can be split in more than one
entity only by the application of the inverse morphism h−1

1 , that is applied
after the application of id . This means that when e is split, no other
modifications in the link structure can happen. Therefore, since h−1

1 (e)
is a pure chain, it will be remapped by h2 into another pure chain.

5. This condition follows in a straightforward manner from hypothesis (a).

Lemma B.2.1. Let γ1 be a concrete configuration. Then:

γ1�−
h1−−→γ ⇒ ∃(γ2, h2) ∈ SExp(γ), ∃h12 : γ1�−

h12−−−→γ2.

Proof. We show the existence of (γ2, h2) ∈ SExp(γ) and h12 by construction.
First of all, if γ is L-safe then we trivially have (γ, id γ) ∈ SExp(γ) and h12 = h1.
Therefore, let us assume that γ is not L-safe and let

E<Lγ = {e ∈ Eγ | C(e) 6= 1 ∧ ∃e′ ∈ PV : d(e′, e) 6 L}

that is E<Lγ is the subset of non concrete entities that — being closer than
L+ 1 for some program variables — make γ non L-safe. Moreover, for e ∈ Eγ ,
with h−1

1 (e) = e1, . . . , en, given a m > 0 let Prefixm(e) = {e1, . . . , em}, i.e.,
Prefixm(e) is the prefix of the pure chain h−1

1 (e) containing the firstm entities1.

1In case m ^ n then Prefixm(e) = h−1
1 (e).

B.2 Proofs of Section 5.5 273

Now, let γ2 = (Eγ2 , µγ2 , Cγ2) defined as:

Eγ2 =Eγ1\{e ∈ h
−1
1 (e′) | e′ ∈ E<Lγ } ∪

⋃

e∈E<L
γ

PrefixL+1(e)

∀e∈Eγ2 : µγ2(e) =

{
µγ1(last(h

−1
1 (h1(e)))) if e= last(PrefixL+1(e

′)) ∧ e′∈E<Lγ
µγ1(e) otherwise

∀e∈Eγ2 : Cγ2(e) =

{
dh−1

1 (e)− Le if e= last(PrefixL+1(e
′)) ∧ e′∈E<Lγ

Cγ1(e) otherwise.

The previous definition has the following intuition: Eγ2 is a subset of entities
in Eγ1 . Entities mapped by h1 in E<Lγ are included only if they are among
the first L+ 1 entities of pure chain described by h1. µγ2 and Cγ2 are defined
according to Eγ2 so that γ2 corresponds to an abstract version of Eγ1 .

We now define the morphism h2 and h12. In particular for e ∈ Eγ2 let:

h2(e) = h1(e) (B.12)

and for e′ ∈ Eγ1 let h−1
1 (h1(e

′)) = e1, . . . , e2 (n > 0):

h12(e
′) =

{
e′ if e′ = ej and 1 6 j 6 L
eL+1 otherwise.

(B.13)

Note that according to this definition:

h1 = h2 ◦ h12. (B.14)

Since h1 is a morphism (and by construction of γ2) also h2 is such. We prove
that h12 is a morphism by showing that it fulfils condition 1m-4m of Defini-
tion 5.3.3.

1m. Let e ∈ Eγ2 . Let h−1
1 (h2(e)) = e1, . . . , en. By definition of h12, we have

e = ej for some 1 6 j 6 n. We distinguish two cases:

1. if j 6 L then |h−1
12 (e)| = 1 by construction, and therefore h−1

12 (e) is
a pure chain.

2. otherwise (by construction of h12) it is j = L + 1, and |h−1
12 (e)| =

eL+1, . . . , en which is also a pure chain.

2m. Let e, e′ ∈ Eγ2 such that e ≺γ2 e
′. Since h2 is a morphism, then either

h2(e) ≺γ h2(e
′) or h2(e) = h2(e

′). In the first case, we have that (also
because h1 is a morphism):

last(h−1
12 (e)) = last(h−1

1 (h2(e))) �γ1 first(h−1
1 (h2(e

′))) = first(h−1
12 (e′))

If h2(e) = h2(e
′) the the property is fulfilled observing that by con-

struction h−1
1 (h2(e)) = h−1

1 (h2(e
′)). Let h−1

1 (h2(e)) = e1, . . . , en, then,

274 Appendix B – Proofs of Chapter 5

if e, e′ are both within the prefix of the first L entities of the pure
chain h−1

1 (h2(e)) then last(h−1
12 (e)) = e ≺γ1 e′ = first(h−1

12 (e′)). Oth-
erwise, whereas e must be at position L and e′ at position L+ 1. Thus,
last(h−1

12 (e)) = eL ≺γ1 first(h−1
12 (e′)) = eL+1.

3m. Let e, e′ ∈ Eγ1 with e ≺γ1 e
′. Assume by contradiction that h12(e

′) ≺γ2
h12(e) then by definition of morphism h2(h12(e

′)) ≺γ2 h2(h12(e)) that in
turn implies, by (B.14), h1(e

′) ≺γ h1(e) that is a contradiction because
h1 is a morphism. Hence it must be h12(e) �γ2 h12(e).

4m. For e ∈ Eγ2 , we prove that Cγ2(e) = Cγ1(h
−1
12 (e)). According to the

definition of γ2, we have that the cardinality of entities are the same as in
γ1 except for every entity that corresponds to e = last(PrefixL+1(e

′)) for
some e′ ∈ E<Lγ . By definition h12 maps onto e the subchain of (concrete)
entities in the suffix EL+1, . . . , e|h−1(h2(e))| that corresponds to Cγ2(e).

Hence, h12 satisfies all the conditions 1m-4m, we conclude that it is a morphism.

The next lemma proves a property enjoyed by configurations related by
a morphism h after the application of operations add , cancel or modify on
both configurations using the same parameters. The property is described
visually in Figure B.4: after the application of the corresponding operation the
configuration are related by a morphism h′ which, were defined, corresponds
to h.

Lemma B.2.2. Let γs, γc be two (0<)L-safe configurations such that γc�−h−→γs

and α = x.an, and α′ = y.am with n,m 6 L. Then:

1. add (γc, α)�−h
′

−−→add (γs, α) where h � (Eγc ∩Eadd(γc,α)) = h′;

2. cancel(γc, α)�−h
′

−−→cancel(γs, α) where h �Ecancel(γc,α) = h′;

3. modify(γc, α, α′)�−h
′

−−→modify(γs, α, α′) where h �Emodify(γc,α,α′) = h′.

Proof.

1. By definition we have:

add (γc, α) = 〈Eγc ∪ {e}, µγc{e/[[α]]}, Cγc{1/e}〉PV

add (γs, α) = 〈Eγs ∪ {e′}, µγs{e′/[[α]]}, Cγs{1/e′}〉PV

where e = min(Ent\Eγc) and e′ = min(Ent\Eγs). We define the function
h′ : Eadd(γc,α) → Eadd(γs,α) as follows:

∀ẽ ∈ Eadd(γc,α) : h′(ẽ) =

{
e′ if ẽ = e
h(ẽ) otherwise.

B.2 Proofs of Section 5.5 275

h

γs

γc

h′

add

add(γc, α)

add(γs, α)

add

h

γs

γc

h′

modify

modify(γc, α, α′)

modify(γs, α, α′)

modify

h

γs

γc

h′

cancel

cancel(γc, α)

cancel(γs, α)

cancel

Figure B.4: Applying the same operation on configurations related by a mor-
phism results in configurations related by a morphism.

A consequence of the interpretation ϑ for program variables and of the
hypothesis on the morphisms (5.11) of Section 5.6.1 (see page 155) is
that the update on γs (being L-safe) corresponds to that in γc, i.e.,
h([[α]]µγc ,ϑ) = h([[α]]µγs ,ϑ). In particular, if unreachable entities are ob-

tained by the changes on the topology, they are a subset of µ∗
γc([[α]]) and

µ∗
γs([[α]]), respectively. This means, that in γc and γs entities garbage col-

lected by the application of 〈·〉PV are related by the morphism h. Hence,
since h is surjective, then it follows that h′ is also surjective.

Moreover, because h is a morphism, it is possible to show that also h′

satisfies condition 1m-4m of Definition 5.3.3 and thus h′ is a morphism
itself.

2. For the second case we have:

cancel(γc, α) = 〈Eγc\{[[α]]}, µγc ◦ ψc, Cγc � (Eγc\{[[α]]})〉PV

cancel(γs, α) = 〈Eγs\{[[α]]}, µγs ◦ ψs, Cγs � (Eγs\{[[α]]})〉PV

where ψ : Eγc → E⊥
γc and ψ : Eγs → E⊥

γs are defined as

ψc(e) =

{
⊥ if e ∈ µ−1

γc ([[α]]) ∪ [[α]]
e otherwise

ψs(e) =

{
⊥ if e ∈ µ−1

γs ([[α]]) ∪ [[α]]
e otherwise

In this case we define h′ as restriction of h on the remaining entity after
[[α]] has been removed and garbage collection has taken place. That is

h′ = h �Ecancel(γc,α).

By the same argument given for add(γc, α), it follows that h′ is surjective
and, by being a restriction of h, is a morphism.

3. Similar two the previous two cases.

276 Appendix B – Proofs of Chapter 5

Lemma 5.6.25 λ defined in rule (ASGN-s) is a reallocation.

Proof. By Proposition 5.6.20, it is enough to prove that it preconditions (a)
and (b) are satisfied by λ. For condition (a) we have to show that there does
not exist an e in the target state such that h ◦ h−1

cf (e) is not a chain in the
source state. By contradiction let us assume such e does exist. Then, by
definition of morphism, h−1

cf (e) is a pure chain in γq′′ ∈ SExp(γq′). This implies
(in particular using 3m) that also h◦h−1

cf (e) is a pure chain in γq′ . Hence, since
the chain does not exist in the source state, then it must have been created
by the rearrangement of pointers due to the execution of the assignment. In

the context of Proposition 5.6.20 this corresponds to γq =
id
=� γq′ . Since the

chain is created by manipulation of a link by the assignment there must exist
two entities e1, e2 ∈ h ◦ h

−1
cf (e) such that e1 ⊀γq e2, before id and e1 ≺γq′

e2
after. However, γq is L-compact and therefore PV -reachable, then there exists
e3 6= e1 such that e3 ≺γq e2 (e3 could be either in PV or reachable from an
entity in PV). But then in γq′ — after the link between e1 and e2 has been
set — we have indegree(e2) > 1, this implies that e1, e2 is not a pure chain
contradicting our initial hypothesis. Therefore, precondition (a) is fulfilled.

The condition (b) is straightforward since in the assignment no new entities
are created.

Theorem 5.6.27 For all program p : id (Ap) v Hp.

Proof. We prove the theorem by defining a relation between id(Ap) and Hp
and proving that it is a simulation id (Ap) v Hp. Let

R = {((r, γc), (r, γs), h) ∈ QAp ×QHp × (Ent ⇀ Ent) | r ∈ Par ,

γs = cf(γc), h = hcf}. (B.15)

First of all we prove that R is a simulation, by showing that it satisfies condi-
tions 1.a and 1.b of Definition 5.4.1. To this end, assume ((r, γc), (r, γs), h0) ∈
R

1.a) Straightforward since by definition of R we have γc�−h0−−→γs.

1.b) We prove by induction on the structure of the statement r that the target
state of every possible (r, γc) satisfies (i), (ii). We distinguish several
cases.

Base of induction.

– case r = new(α.a). By the rules of the concrete transition system
the only possible transition is:

new(α.a), γc −→id skip, add (γc, α).

On the symbolic level we have:

new(α.a), γs −→λ skip, cf(add (γs, α)).

B.2 Proofs of Section 5.5 277

with λ defined according to the operational rule. By Lemma B.2.2,

add (γc, α)�−h1−−→add (γs, α) where h1�(Eγc∩Eadd(γc,α)) = h0. There-
fore if h2 : add(γs, α)�−→cf(add (γs, α)) then it follows that

h3 = h2 ◦ h1 : add(γc, α)�−→cf(add (γs, α))

because of composition of morphisms. moreover, since cf(add (γs, α))
is L-canonical by definition, then it is th canonical form of add(γc, α)
via h3 which is unique up to isomorphism (cf. Theorem 5.6.16). But
then by definition of R we have:

(skip, add (γc, α)), (skip, cf(add (γs, α))), h3) ∈ R

which proves (i).

For condition (ii) we must show that id � λ via h1 and h3. The
first condition of Definition 5.3.17 has been already proved. For the
second condition, let e1 ∈ E′ then we have:

λ(e1, hcf(e1))
= C(e1) [by def λ in (NEW-s)]
= d|h−1

0 (e1)|e [by morphism def.]
= ◦

∑
ẽ∈h−1

0 (e1)
id (ẽ, ẽ) [by def. id and C(ẽ) = 1]

= ◦
∑

(e1,h2(e1))=(h0(ẽ),h3(ẽ))
id(ẽ, ẽ) [h0(ẽ)=e1 ⇒ h3(ẽ)=h2(e1)]

The property (No-Cross) is straightforward since the execution of the
statement boils down to the application of add (γc, α) that does not
perform rearrangement of links between entities (cf. (5.13) page 158)
and because id does not produce any permutation of the entities.
Also condition 4 of � is straightforward. In fact the only new entity
in the concrete level is mapped by the morphism of the canonical
form onto the new entity of the symbolic level (that is concrete).
To see this, let Eadd(γc,α)\cod(id) = {e} and (Eadd(γs,α)\cod(λ) =
{e′}. By Lemma B.2.2 it must be (h2 ◦ h1)

−1(e′) = e otherwise
h1 � (Eγc ∩ Eadd(γc,α)) = h0 would be contradicted (see also the
proof of the lemma).

– case r = del(α.a). In this case, on the concrete level the only
possible transition is:

del(α.a), γc −→id skip, cancel(γc, α.a)

On the symbolic level:

del(α.a), γs −→λ skip, cf(cancel(γs, α.a))

where λ is defined as the operational rule. Again by Lemma B.2.2
we have

cancel(γc, α.a)�−h1−−→cancel(γs, α.a)

278 Appendix B – Proofs of Chapter 5

and if cancel(γs, α.a)�−h2−−→cf(cancel (γs, α.a)) then cf(cancel (γs, α.a))
is also the canonical form of cancel(γc, α.a) by the morphism h3 =
h2 ◦ h1. This implies by definition of R:

((skip, cancel(γc, α.a)), (skip, cf(cancel(γs, α.a))), h3) ∈ R.

Moreover, λ defined in the del rule is the same as the one in the
new rule, therefore, we have already shown in the case new(α.a)
that conditions 1, 2, 3, of � definition hold. For condition 4 it is
enough to observe that it is trivially true since the set of new entities
is empty both at the concrete as well as at the symbolic level. Hence
we can conclude that also for the case of del we have id � λ.

– case r = α1.a := α2.a. By the rules of the concrete transition
system, the only possible transition is:

α1.a := α2.a, γ
c −→id skip,modify(γc, α1.a, α2.a)

Let us indicate by γctrg the target state (of the previous concrete
transition). On the symbolic level we have:

α1.a := α2.a, γ
s −→id skip, cf(γx)

for (γx, hx) ∈ SExp(γ′) where γ′ = modify(γs, α1.a, α2.a) and λ =

hcf ◦ h−1
x (γs =

id
=� γ′). As above, let us refer to the target configura-

tion of the previous symbolic transition by γstrg .

Since this rule is nondeterministic, i.e., there can be more than one
cf(γx), we must show that there exists a morphism h2 for one of the
possible cf(γx) resulting as target state of the rule.

Lemma B.2.2 allows us to conclude that there exists a morphism
from γctrg and γ′ and this is precisely h0 (cf. Figure B.3 left lower sub-
diagram 1). Lemma B.2.1 then ensures the existence of a morphism
hcx for one γx ∈ SExp(γ′). Thus, we can define h2 : γctrg�−→cf(γx) as
composition of morphisms h2 = hcf(γx)◦hcx that by Proposition 5.3.7
is indeed a morphism (cf. Figure B.3, sub-diagram 3). But then
since γstrg is L-canonical, h2 is the (unique) morphism that relate
γctrg to its normal form, that implies

((skip, γctrg), (skip, γ
s
trg), h2) ∈ R.

Now, we show that id � λ. As for the previous statement the first
condition of � is straightforward. In order to prove the the second,
first of all observe the interdependence of morphisms and realloca-
tion depicted in Figure B.3, and in particular, as we have already
seen, by Lemma B.2.2, the morphism between γctrg and γ′ is in fact

B.2 Proofs of Section 5.5 279

h0. Hence, let e1 ∈ Eγ′ and e2 ∈ Eγs
trg

, then we have:

λ : (e1, e2) = ◦
∑
ẽ∈h−1

x (e1)∩h−1
cf(γx)

(e1)
C(ẽ) [def λ in (ASGN-s)]

= |(hcx)
−1(h−1

x (e1) ∩ h
−1
cf(γx)(e2))| [by Figure B.3]

= |h−1
0 (e1) ∩ h

−1
2 (e2)| [by Figure B.3]

= ◦
∑
ẽ∈h−1

0 (e1)∩h−1
2 (e2) id (ẽ, ẽ)

= ◦
∑

(e1,e2)=(h0(ẽ),h2(ẽ))
id(ẽ, ẽ).

Finally, the reallocation id does not allow crossings, in particular be-
cause link updates occur only on entities with cardinality 1. There-
fore the condition (No-Cross) is satisfied. Condition 4 of � is triv-
ially fulfilled since no new entities are created in the concrete and
symbolic transition. We conclude that id � λ.

Inductive step.

We show now only one case related to inductive step, namely the
sequential composition, since the others can be shown in the same
way. Assume a concrete state

qc ≡ s1; s2, γ
c
1

and a symbolic
qs ≡ s1; s2, γ

s
1 .

According to the concrete transition system, state qc can only per-
form a single transition

s1; s2, γ
c
1 −→id s

′
1; s2, γ

c
2

corresponding to a transition

s1, γ
c
1 −→id s

′
1, γ

c
2

for some statement s′1 completely determined by the structure of s1.
On the symbolic level to the transition performed by qs corresponds
to:

s1; s2, γ
s
1 −→λ s

′
1; s2, γ

s
2

for some λ determined by the transition

s1, γ
s
1 −→λ s

′
1, γ

s
2 .

By induction hypothesis we have ((s1, γ
c
1), (s1, γ

s
1), h1) ∈ R. There-

fore:

280 Appendix B – Proofs of Chapter 5

(a) there exists h2 such that ((s′1, γ
c
2), (s

′
1, γ

s
2), h2) ∈ R and

(b) id � λ.

But then by (a), (b) we have that:

∗ h1 : qc�−→qs

∗ ((s′1; s2, γ
c
2), (s

′
1; s2, γ

s
2), h2) ∈ R

∗ id � λ.

Then by definition, it is (qc, qs, h1) ∈ R.

We conclude that the relation R is a simulation.

Now in order to prove that Ap v Hp we show that condition 2 of Defini-
tion 5.4.1 is satisfied by the simulation R.

2.a) Both automata id(Ap) and Hp have only one single initial state with the
same configuration, namely (PV ,∅,1PV) that is also L-canonical. But
the we have:

((r, (PV ,∅,1PV)), (r, (PV ,∅,1PV)), id (PV ,∅,1PV))inR.

where r is the initial statement of the program p.

The second condition 2.a) that relates the set of new entities N and the
initial valuation θ of the initial states is trivial since — as we have seen
— both id (Ap) and Hp have the same single initial state.

2.b) According to the definition of accept state for id(Ap) and Hp have the
following sets:

Fid(Ap) = {F̂ c1 , . . . , F̂
c
k , F̃

c
1 , . . . , F̃

c
k}

FHp = {F̂ s1 , . . . , F̂
s
k , F̃

s
1 , . . . , F̃

s
k}

therefore as ψ : Fid(Ap) → FHp we naturally take:

ψ(F̂ ci) = F̂ si

ψ(F̃ ci) = F̃ si

for 1 6 i 6 k. It is straightforward to see that ψ is bijective. Now,
let F ∈ Fid(Ap) and q = (s, γ) ∈ F , we must prove that there exists
q′ ∈ ψ(F) and a morphism h : q�−→q′ such that (q, q′, h) ∈ R. Let
q′ = (s, cf(γ)), the existence of cf(γ) is ensured by Theorem 5.6.16 since
q — being concrete — is L-safe by definition as well as PV -reachable by
Proposition 5.6.10. Having a L-canonical and well-formed configuration
implies that q′ ∈ QHp . Moreover, q′ ∈ ψ(F) since q and q′ have the same
statement s. But then by definition of R we have (q, q′, h) ∈ R.

Since condition 2.a) and 2.b) of Definition 5.4.1 hold we finally conclude that
id (Ap) v Hp.

B.2 Proofs of Section 5.5 281

Lemma B.2.3. Let Emax > 0 be a fixed constant. If for all q ∈ QHp : |Eq | 6
Emax then |QHp | is finite.

Proof. Hp states are of the form q = (s, E, µ, C). Let smax be the longest
sequential component in s and let m be the number of sequential components.
The number of possibilities for s is bound by |smax|m. Because of the use
of reallocations we can consider states with entities up to renaming, i.e., we
can always use entities within a finite set with Emax elements (by hypothesis
|E| 6 Emax)

2. Furthermore, the component µ ranges over the set of all possible
applications from E onto E⊥. Therefore, fixing E we have (|E|+1)|E| different
possible µ. Finally the component C is the set of all mappings from E to the set
{1, . . . ,M} ∪ {∗} therefore, we have (M + 1)|Emax| possibilities. Summarising
we have:

|QHp | 6 |smax|
m · 2Emax ·

Emax∑

n=0

(n+ 1)n ·
Emax∑

n=0

(M + 1)n

6 |smax|
m · 2Emax ·

(Emax + 1)Emax − 1

Emax
·
(M + 1)Emax − 1

M

Hence, QHp is finite.

Theorem 5.6.29 For all programs p, Hp is finite-state.

Proof. By contradiction, assume Hp is infinite-state. Therefore, by Lemma
B.2.3 there does not exist a bound on the number of entities in the states,
i.e., there does not exist a constant, say Emax > 0 such that for all q ∈ QHp :
|Eq | 6 Emax. Since every state has a canonical and therefore PV -reachable (cf.
Proposition 5.6.14) configurations, this can be the case only for two reasons:

• either the number of PV is infinite,

• or in the state there are unbounded chains of entities.

The first possibility is impossible because, by definition, PV is finite. The
second is also impossible. In fact, taking an unbounded chain, the number of
entities with indegree greater than one is either unbounded or bounded. On
the one hand, if we assume that the number of such entities is unbounded, then
since the state is PV -reachable this again would imply that PV is infinite. On
the other hand, if there is a bounded number of entities with indegree greater
than one, then since the chain is unbound it must be that after a certain point
we have an unbounded number of entities with indegree equal one, i.e., the
chain becomes pure. Again this is not possible since states are in canonical
form.

2As we have seen, this of course does not prevent to express unbounded number of entity
creations.

282 Appendix B – Proofs of Chapter 5

B.3 Proofs of Section 5.7

Theorem 5.7.5 For all HABA H such that C(H) = M < M̂ : L(H) = L(H ⇑
M̂).

Proof. [L(H) ⊆ L(H ⇑M̂)] Let (σ,N, θ) ∈ L(H), with σ = E0λ0E1λ1 · · · . Let
ρ = q0λ0q1λ1 · · · be the run generating (σ,N, θ) by some generator (hi)i∈N.
We define a run ρ′ of H ⇑M̂ that generates (σ,N, θ) in the following way. Let
ρ′ = q′0λ0q

′
1λ

′
1 · · · where for all i > 0, we take q′i ∈ Sqi such that:

∀ ∈ Eq′i : d|h−1
i (e)|eM̂ = Cq′i(e).

By construction of the states in ρ′ and by the definition of H ⇑M̂ for all i > 0
there exists a transition q′i −→λi

q′i+1. As q′0 is an initial state of H ⇑M̂ and
for every accept state qi visited infinitely often, also the corresponding accept
state q′i is visited infinitely often, we conclude that ρ′ ∈ runs(H ⇑M̂). Finally,
it is possible to show that generator (hi)i∈N generates (σ,N, θ) also from run
ρ′. Hence we conclude that (σ,N, θ) ∈ L(H ⇑M̂).

[L(H ⇑M̂) ⊆ L(H)] Let (σ,N, θ) ∈ L(H ⇑M̂), with σ = E0λ0E1λ1 · · · , and
let ρ = q′0λ0q

′
1λ1 · · · be the run generating (σ,N, θ). We define ρ = q0λ0q1λ1 · · ·

such that for all i > 0, where q′i ∈ Sqi . Since ρ′ ∈ runs(H ⇑ M̂) implies
ρ ∈ runs(H) and ρ′ generates (σ,N, θ) by a generator (hi)i∈N implies of ρ
generates (σ,N, θ) by the same (hi)i∈N, we conclude that (σ,N, θ) ∈ L(H).

Proposition 5.7.7 For all γ-valuation (ψ,Θ, δ):

(a) (∃j > 0 : µj ◦Θ(x) = Θ(y) 6= ⊥) ⇒ (x, y) ∈ dom(δ)

(b) Θ(x) = Θ(y) 6= ⊥ ⇒ (x, y) ∈ dom(δ) ∨ (y, x) ∈ dom(δ)

Proof.

(a) If there exists j >0 such that µj◦Θ(x)=Θ(y) then by (Delta Gamma 2)
it can be proved that for all 0 < i 6 j we have δ(µi−1 ◦ Θ(x)+, µi ◦
Θ(x)−) = 1 that in turn implies (µi−1 ◦ Θ(x)+, µi ◦ Θ(x)−) ∈ dom(δ).
Similarly by (Delta Gamma 1), it follows that for all 0 < i 6 j:
(µi ◦ Θ(x)−, µi ◦ Θ(x)+) ∈ dom(δ). Combining these facts, we have
(Θ(x)−, µj ◦Θ(x)+) = (Θ(x)−,Θ(y)+) ∈ dom(δ) and moreover, j > 0 im-
plies (Θ(x)+, y) ∈ dom(δ). By (Delta Theta 2) (x,Θ(x)+) ∈ dom(δ).
Therefore, we can conclude using (Delta Met 2) that (x, y) ∈ dom(δ).

(b) Since Θ(x) = Θ(y) 6= ⊥ we have by (Delta Theta 2):

δ(Θ(x)−, x) > 0 ∧ δ(Θ(x)−, y) > 0

δ(x,Θ(x)+) > 0 ∧ δ(y,Θ(x)+) > 0

B.3 Proofs of Section 5.7 283

Therefore by (Delta Met 3) we have either δ(Θ(x)−, x) ⊕ δ(x, y) =
δ(Θ(x)−, y) or δ(Θ(x)−, y) ⊕ δ(y, x) = δ(Θ(x)−, x). Hence we have ei-
ther (x, y) ∈ dom(δ) (corresponding to the first case) or (y, x) ∈ dom(δ)
(corresponding to the second case).

Proposition 5.7.19 For q1 =
λ
� q2, if E is a maximal weakly connected

subgraph of (Eq1] Eq2 , λ) such that ⊥ /∈ E then Cq1(ι1(E)) = Cq2(ι2(E)).

Proof. Without loss of generality let

ι1(E) = {e1, . . . , en} and ι2(E) = {e′1, . . . , e
′
k}

for k, n > 1. Since E is a maximal weakly connected subgraph, we have the
property:

• ∀e ∈ ι1(E) : λ(e) ∈ ι2(E)

• ∀e ∈ ι2(E) : λ−1(e) ∈ ι1(E).

Thus we can construct a n × k matrix R where R(r, c) = λ(er, ec) (with 1 6
r 6 n and 1 6 c 6 k). Hence we have:

C1(ι1(E))
= C1(e1) + · · ·+ C1(en) [by definition]

=
∑k

j=1 R(1, j) + · · ·+
∑k

j=1 R(n, j) [by def. of R and Def 5.3.12 con. 1]

=
∑n

j=1 R(j, 1) + · · ·+
∑n
j=1 R(j, k) [by def. of R and Def 5.3.12 con. 2]

= C2(e
′
1) + · · ·+ C2(e

′
k)

= C2(ι2(E)).

We will now prove few lemmas that that will be used in the proof of Propo-
sition 5.7.25. These proofs use the following notion. Let γ ′ and γ be a concrete
and an abstract configuration, respectively. Let θ : fv (ψ) ⇀ Eγ′ be an inter-
pretation for the logical variables over γ ′. We extend θ to the set of special
logical variables E±

γ as follows. Let h : γ′�−→γ and e ∈ Eγ , then:

θ±(x) =

θ(x) if x ∈ fv (ψ)
first(h−1(e)) if x = e−

last(h−1(e)) if x = e+
(B.16)

The next definition provides us with a consistency notion between a concrete
interpretation for logical variables θ (in γ ′) w.r.t. a symbolic interpretation

given by Θ, δ in a γ-valuation when γ ′�−h−→γ.

Definition B.3.1. Let h : γ′�−→γ be a morphism where Cγ′ = 1, (ψ,Θ, δ) a
γ-valuation and θ : LVar ⇀ Eγ′ . Then, (θ, h) is consistent with (Θ, δ) (written
(θ, h) m (Θ, δ)) if

284 Appendix B – Proofs of Chapter 5

(a) h ◦ θ = Θ

(b) ∀x, y ∈ fv (ψ) ∪ E±
γ : δ(x, y) = min {dne | µnγ′ ◦ θ±(x) = θ±(y)} where

min ∅ = ⊥.

We use the previous definition in order to keep consistency, from state to
state, between the interpretation given by the valuations of a path π and the
interpretation of an allocation sequence σ generated by π.

Lemma B.3.2. Let π = (q0, D0)λ0(q1, D1)λ1 · · · be a path and let σ be an
allocation sequence generated by the underlying run of π with generator (hj)j∈N

and ψ ∈ CL(φ). Then for all i > 0

(θ, hi) m (hi ◦ θ, δ) ⇒ (ψ, hi+1 ◦ λσi ◦ θ, δ
′) ∈ [λi ◦ (ψ, hi ◦ θ, δ)].

for any δ′ such that (λσi ◦ θ, hi+1) m (hi+1 ◦ λ
σ
i ◦ θ, δ

′).

Proof. First of all, we recall that a δ′ with the property (λσi ◦ θ, hi+1) m (hi+1 ◦
λσi ◦ θ, δ

′) is defined (according to Definition B.3.1) as

δ′(x, y) = min {dne | µn ◦ (λσi ◦ θ)
±(x) = (λσi ◦ θ)

±(y)}

for x, y ∈ fv (ψ)∪E±
qi+1

. Now, for brevity, let Θ = hi ◦ θ and Θ′ = hi+1 ◦λσi ◦ θ.
By definition of generator (Def. 5.3.24) we have that λσi � λi and therefore

λi(Θ(x),Θ′(x)) 6= 0. (B.17)

Hence, condition 1 of Definition 5.7.20 is fulfilled. We now prove condition 2.
Let E be a maximal (weakly) connected subgraph of (Eqi] Eqi+1 , λi).

Proposition 5.7.19 and the property (No-Cross) of � (Def. 5.3.17) imply:

|h−1
i (ι1(E))| = |h−1

i+1(ι2(E))|. (B.18)

That is: the number of entities on the concrete level that correspond to the first
and the second projection of the maximal connected subgraph is the same3.
For brevity, let C = |h−1

i (ι1(E))| and let

h−1
i (ι1(E)) = ei1, . . . , eiC

h−1
i+1(ι2(E)) = ei+1

1 , . . . , ei+1
C .

Another consequence of (No-Cross) is that for all 1 6 m 6 C:

λσi (e
i
m, e

i+1
m) 6= 0 (B.19)

3Note that (No-Cross) is necessary since if the cardinalities on the abstract level corre-
spond, in case of unbounded entities, this does not necessarily imply that also at the concrete
level the corresponding cardinalities are the same. In fact, some entity may during the tran-
sition but this may not be revealed on the abstract level if the cardinality is ∗.

B.3 Proofs of Section 5.7 285

that is, the entity at position m in the chain corresponding to ι1(E) is re-
allocated in the entity at position m in the chain corresponding to ι2(E).
Therefore, it is straightforward to see that the interpretation of a variable
x on ι1(E) will have the same position in ι2(E), in particular, the distance
between first(ι2(E))− and last(ι2(E))+ is unchanged w.r.t. first(ι1(E))− and
last(ι1(E))+. Hence, conditions 2(a)-(b) of Definition 5.7.20 hold.

For the other free variables y with interpretation both on ι1(E) and ι2(E)
we have:

µni (θ(x)) = θ(y) ⇒ µni+1(λ
σ
i ◦ θ(x)) = λσi ◦ θ(y) ⇒ δ′(x, y) = dne (B.20)

Moreover, since (θ, hi) m (hi ◦ θ, δ) we have:

µni (θ(x)) = θ(y) ⇒ δ(x, y) = dne. (B.21)

Thus, from (B.20) and (B.21) it follows that δ′ satisfies condition 2(c) of Defi-
nition 5.7.20. We conclude that (ψ, hi+1 ◦ λ

σ
i ◦ θ, δ

′) ∈ [λi ◦ (ψ, hi ◦ θ, δ)].

Lemma B.3.3. Let π = (q0, D0)λ0(q1, D1)λ1 · · · be a path and let σ be an al-
location sequence generated by the underlying run of π with generator (hj)j∈N.
Then for all j > i > 0,

a) if (λσj−1 ◦ · · ·λ
σ
i ◦ θ, hj) m (hj ◦ λσj−1 ◦ · · ·λ

σ
i ◦ θ, δ) then

(ψ, hj+1 ◦ λ
σ
j ◦ · · · ◦ λ

σ
i ◦ θ, δ

′) ∈ [λj ◦ (hj ◦ λ
σ
j−1 ◦ · · · ◦ λ

σ
i ◦ θ, δ)]

for any δ′ such that (λσj ◦ · · · ◦ λ
σ
i ◦ θ, hj+1) m (hj+1 ◦ λσj ◦ · · · ◦ λ

σ
i ◦ θ, δ

′).

b) if (θ, hi) m (hi ◦ θ, δ) then

(ψ, hj ◦ λ
σ
j−1 ◦ · · · ◦ λ

σ
i ◦ θ, δ

′) ∈ [λj−1 ◦ · · · ◦ λi ◦ (ψ, hi ◦ θ, δ)]

for any δ′ such that (λσj−1 ◦ · · · ◦ λ
σ
i ◦ θ, hj) m (hj ◦ λ

σ
j−1 ◦ · · · ◦ λ

σ
i ◦ θ, δ

′).

Proof.

a) Straightforward. In fact, let θ′ = λσj−1 ◦· · ·◦λ
σ
i ◦θ. Then by Lemma B.3.2

we have
(ψ, hj+1 ◦ λ

σ
j ◦ θ

′, δ′) ∈ [λj ◦ (ψ, hj ◦ θ
′, δ)]

and therefore: (ψ, hj+1◦λσj ◦· · ·◦λ
σ
i ◦θ, δ

′) ∈ [λj ◦(hj ◦λσj−1◦· · ·◦λ
σ
i ◦θ, δ)]

that in fact is what we wanted to prove.

b) We prove this part of the lemma by induction on j > i. The base step
corresponds to Lemma B.3.2 therefore we show here the inductive step.
For the sake of readability, let λj−1,i = λj−1 ◦ · · · ◦ λi and λσj−1,i =
λσj−1 ◦ · · · ◦ λ

σ
i . First of all we prove that

[λj ◦ (ψ, hj ◦ λσj−1,i ◦ θ, δ)] ⊆ [λj ◦ λj−1,i ◦ (ψ, hi ◦ θ, δ)]. (B.22)

286 Appendix B – Proofs of Chapter 5

The set inclusion (B.22) can be proved using the induction hypothesis:

(ψ, hj ◦ λσj−1,i ◦ θ, δ
′) ∈ [λj−1 ◦ λj−2,i ◦ (ψ, hi ◦ θ, δ)]

as follows:

[λj ◦ λj−1,i ◦ (ψ, hi ◦ θ, δ)]

=
⋃
v∈[λj−1,i◦(ψ,hi◦θ,δ)]

λj ◦ v

=
(⋃

v∈[λj−1,i◦(ψ,hi◦θ,δ)]\{(ψ,hj◦λσ
j−1,i◦θ,δ)}

λj ◦ v
)

∪[λj ◦ (ψ, hj ◦ λσj−1,i ◦ θ, δ)]

Hence combining (B.22) and part a) of this lemma we conclude (ψ, hj+1 ◦
λσj ◦ · · ·λ

σ
i ◦ θ, δ) ∈ [λj ◦ · · · ◦ λi ◦ (ψ, hi ◦ θ, δ)].

Lemma B.3.4. Let γ = (E, µ,1) and γ ′ be two configurations such that

γ�−h−→γ′ and v = (ψ, h ◦ θ, δ) a γ ′-valuation. Then

(h, θ) m (h ◦ θ, δ) ⇒ h ◦ µn(θ(x)) = [[x.an]]
1
γ,v.

Proof. The intuition of this lemma is that the entity on the concrete level
representing x.an is mapped precisely on the entity on the abstract level that
corresponds to the (first components of the) semantics of x.an.

We prove this lemma by induction on n.

• Base case n = 0. If θ(x) = ⊥ then h ◦ θ(x) = ⊥ (is undefined) and by

definition [[x]]
1
γ,v = ⊥. If θ(x) 6= ⊥ then we have h ◦µ0(θ(x)) = h ◦ θ(x) =

[[x.an]]
1
γ,v by Definition 5.7.13.

• Inductive step. Assume the statement holds for n. We prove it for n+1. If
θ(x) = ⊥ then µn(θ(x)) = µn+1(θ(x)) = ⊥, that implies h ◦µn(θ(x)) and
h◦µn+1(θ(x)) are undefined. Because of the hypothesis of consistency, we

have immediately that also h◦θ(x) = ⊥ therefore by definition [[x.an]]1γ,v =

[[x.an+1]]
1
γ,v = ⊥. Therefore, assume θ(x) 6= ⊥ and let h−1(h ◦ θ(x)) =

e1, . . . , ek and θ(x) = ei. We distinguish two cases.

1. If i + n + 1 6 k then h ◦ µn(θ(x)) = h ◦ µn+1(θ(x)) = h ◦ θ(x).
Since (h, θ) m (h ◦ θ, δ), then δ(x,Θ(x)+) = dk− ie > n therefore by

Definition 5.7.13 we have [[x.an]]
1
γ,v = h ◦ θ(x).

2. If i+ n+ 1 > k again we distinguish two cases:

(a) Assume h ◦ µn(θ(x)) = h ◦ µn+1(θ(x)), that is µn(θ(x)) and
µn+1(θ(x)) are mapped by the morphism h onto the same ab-
stract entity and let Θ = hi ◦ θ. By the induction hypothesis we

B.3 Proofs of Section 5.7 287

have that h ◦ µn(θ(x)) = [[x.an]]
1
γ′,v. Moreover, if [[x.an]]

1
γ′,v =

µjγ′ ◦Θ(x) then
Cv(x, j) > n

where the inequality is strict since x.an is not the last instance
of [[x.an]]1γ′,v otherwise h ◦ µn(θ(x)) and h ◦ µn+1(θ(x)) would
not be the same contradicting the initial hypothesis. But then
Cv(x, j) > n + 1 and by Definition 5.7.13 we have [[x.an]]

1
γ,v =

[[x.an+1]]
1
γ,v. Summarising in one line:

h ◦ µn+1(θ(x)) = h ◦ µn(θ(x)) = [[x.an]]1γ,v = [[x.an+1]]1γ,v

that is precisely what we wanted to prove.

(b) As a second possibility, assume

h ◦ µn+1(θ(x)) = µγ′(h ◦ µn(θ(x))) (B.23)

that is µn(θ(x)) and µn+1(θ(x)) are mapped by the morphism
h onto consecutive abstract entities. This initial hypothesis im-
plies that µn(θ(x)) denotes precisely the last entity in the chain
of concrete entities corresponding to h−1(h ◦ µn(θ(x))). If this
would not be the case then also µn+1(θ(x)) would be mapped
by h on the same entity (since h is a morphism) therefore con-
tradicting the initial hypothesis. Let Θ = hi ◦ θ and assume
that

[[x.an]]
1
γ′,Θ,δ = µj−1

γ′ ◦Θ(x) (B.24)

for some j > 0. Then, by Definition 5.7.13 we have:

n 6 Cv(x, j − 1) < n+ 1 (B.25)

where the last inequality is true otherwise [[x.an+1]]1γ′,v = µj−1
γ′ ◦

Θ(x) that would imply that h ◦ µn ◦ θ(x) is not the last entity
of h−1(h ◦ µn(θ(x))).
Now, by (B.25) it is straightforward to see that Cv(x, j− 1) = n
and therefore Cv(x, j) > n+1. By Definition 5.7.13 this implies

[[x.an+1]]
1
γ′,v = µjγ′ ◦Θ(x). Note that the entity µjγ′ ◦Θ(x) does

exist since it is the image (via h) of µn+1 ◦ θ(x). Finally, we
have:

[[x.an+1]]
1
γ′,v = µjγ′ ◦Θ(x) [by definition]

= µγ′ ◦ µj−1
γ′ ◦Θ(x) [by (B.24)]

= µγ′([[x.an]]
1
γ′,v) [by induction]

= µγ′(h ◦ µn ◦ θ(x)) [by (B.23)]
= h ◦ µn+1 ◦ θ(x).

288 Appendix B – Proofs of Chapter 5

Lemma B.3.5. Let ρ = q0λ0q1λ1 · · · be a run generating a triple (σ,N, θ)
with generator (hi)i∈N such that σ,N, θ |= φ. Let

Di = {(ψ, hi ◦ θ, δi) | ψ ∈ CL(φ), σi, Nσ
i , θ |= ψ}

∀x, y ∈ fv (ψ) ∪ E±
qi

: δi(x, y) = min {dne | µni ◦ θ
±(x) = θ±(y)}

where θ± is the extension of θ to the set E±
qi

as defined by (B.16) (cf. page 283).
Then (qi, Di) is an atom for all i ∈ N.

Proof. We show by induction on the structure of ψ that Di satisfies the condi-
tions of Definition 5.7.17.

• Atomic propositions. Give a valuation v = (ψ,Θ, δ), where ψ is an
atomic propositions, we have to prove the following implication:

v ∈ AV qi ⇒ v ∈ Di. (B.26)

To this end we need to prove the existence of a suitable (concrete) inter-
pretation θ for fv(ψ) and extend it according to (B.16) (cf. page 283).
Suitable in this context means that the choice of θ(x) should be such that
ψ is valid and — at the same time — Θ = hi ◦ θ and δ = δi. We now
single out the three possible cases occurring for the atomic proposition.

– case ψ = x.an new. Let v = (x.an new,Θ, δ) and let h−1
i (Θ(x)) =

e1, . . . , ek (k > 1) and θ(x) = eix where the index 1 6 ix 6 k is
chosen according to the following rules:

ix =

δ(Θ(x)−, x) if δ(Θ(x)−, x) 6=∗ ∧ δ(Θ(x)+, x) 6=∗
k − δ(x,Θ(x)+) if δ(Θ(x)−, x)=∗ ∧ δ(Θ(x)+, x) 6=∗
δ(Θ(x)−, x) if δ(Θ(x)−, x) 6=∗ ∧ δ(Θ(x)+, x)=∗

(B.27)
Note furthermore, for the current case x.an new, we cannot have

δ(Θ(x)−, x) = δ(x,Θ(x)+) = ∗

otherwise this would imply [[x.an]]γqi
,v = Θ(x) and C(Θ(x)) = ∗

that is impossible since new entities cannot be unbounded. Hence
the choice of ix is deterministic. Given such θ, let as usual θ± be its
extension, by construction we have:

hi ◦ θ
± = Θ (B.28)

δ(x, y) = δi(x, y)

for all x, y ∈ fv (ψ) ∪ E±
qi

. Hence, we can conclude that:

v = (x.an new,Θ, δ) = (x.an new, hi ◦ θ, δi). (B.29)

B.3 Proofs of Section 5.7 289

A consequence of (B.28) is that (hi, θ) m (Θ, δ) and by Lemma B.3.4

we have that [[x.an]]
1
γqi

,v = hi ◦ µn(θ(x)). From v ∈ AV qi it fol-

lows [[x.an]]1γqi
,v ∈ Nqi . Thus, by the properties of the generator

(Def. 5.3.24) — in particular as stated by Lemma 5.3.19 — we have
that new entities on the abstract level are related by the generator
to the new entities on the concrete level, i.e., µn(θ(x)) ∈ Nσ

i and
therefore σi, Nσ

i , θ |= x.an new. Hence, by (B.29) and by definition
of Di, we conclude that v ∈ Di which proves (B.26).

– case ψ = (x.an = y.am). Give a valuation v = (x.an = y.am,Θ, δ) ∈
AV qi , by Definition 5.7.15 we have ∆γqi

,v(x.a
n, y.am) = 0 that by

definition implies

a) [[x.an]]
1
γ,v = [[y, am]]

1
γ,v = ⊥

b) [[x.an]]1γ,v = [[y, am]]1γ,v 6= ⊥ and [[x.an]]2γ,v 6= ∗

c) [[x.an]]1γ,v = [[y, am]]1γ,v 6= ⊥ and [[x.an]]2γ,v = ∗ and (δ(x, y)⊕m =
n ∨ δ(y, x)⊕ n = m))

Let us discuss here b) and c) only. We need to show the existence
of a suitable θ. Assume:

h−1
i (Θ(x)) = e1, . . . , ekx

h−1
i (Θ(y)) = e1, . . . , eky

with kx, ky > 1. For the selection of θ(x) and θ(y) we apply the
same strategy employed for x.an new. Namely, let θ(x) = eix and
θ(y) = eiy where ix, iy are chosen according to (B.30) and (B.31),
respectively.

ix=

δ(Θ(x)−, x) if δ(Θ(x)−, x) 6=∗ ∧ δ(Θ(x)+, x) 6=∗
k − δ(x,Θ(x)+) if δ(Θ(x)−, x)=∗ ∧ δ(Θ(x)+, x) 6=∗
δ(Θ(x)−, x) if δ(Θ(x)−, x) 6=∗ ∧ δ(Θ(x)+, x)=∗
M<j<kx −M if δ(Θ(x)−, x)=∗ ∧ δ(Θ(x)+, x)=∗

(B.30)

iy =

δ(Θ(y)−, y) if δ(Θ(y)−, y) 6=∗ ∧ δ(Θ(y)+, y) 6=∗
k − δ(y,Θ(y)+) if δ(Θ(y)−, y)=∗ ∧ δ(Θ(y)+, y) 6=∗
δ(Θ(y)−, y) if δ(Θ(y)−, y) 6=∗ ∧ δ(Θ(y)+, y)=∗
M<j<ky −M if δ(Θ(y)−, y)=∗ ∧ δ(Θ(y)+, y)=∗

(B.31)

Since when both δ(Θ(y)−, x) = δ(Θ(y)+, x) = ∗ and δ(Θ(y)−, y) =
δ(Θ(y)+, y) = ∗ the indexes ix, iy are still not completely deter-
mined, then we select them such that the following conditions are
satisfied:

ix − iy = n−m if δ(y, x) ⊕m = n

iy − ix = m− n if δ(y, x)⊕ n = m.

290 Appendix B – Proofs of Chapter 5

By construction we have that hi ◦ θ± = Θ and δ = δi, or in other
words, (hi, θ) m (Θ, δ). To prove that v ∈ Di it remains to show that
by the previous choice of θ(x) and θ(y) we indeed have: σi, Nσ

i , θ |=
x.an = y.am.

Assume case b) and let

[[x.an]]2γqi
,v = l 6= ∗ and e = first(h−1

i ([[x.an]]1γqi
,v)).

Depending whether x is interpreted onto [[x.an]]γqi
,v or not, by defi-

nition we have two possibilities, namely:

(i) if (x, [[x.an]]
−
γqi

,v) ∈ dom(δ) then by Definition 5.7.13 Cγqi
(x, j −

1) = n− l − 1 and therefore:

µn−li (θ(x)) = e (B.32)

(ii) otherwise ([[x.an]]
−
γqi

,v, x) ∈ dom(δ) in which case we have (again

by Definition 5.7.13) δ([[x.an]]
−
γqi

,v, x) = l−n and by consistency

of δ we have
µl−ni (e) = θ(x). (B.33)

Following the same lines, it is possible to show that depending on
the interpretation of y w.r.t. [[y.am]]γqi

,v either

µm−l
i (θ(y)) = e (B.34)

or
µl−mi (e) = θ(y) (B.35)

From the previous case distinction we can determine the precise
interpretation on the concrete level for µni (θ(x)) and µmi (θ(y)). In
particular, from (B.32) and (B.33) we obtain:

µni (θ(x)) = µli(µ
n−l
i (θ(x))) = µli(e) (B.36)

µni (θ(x)) = µni (µl−ni (e)) = µli(e) (B.37)

For the variable y, from (B.34) and (B.35) we have

µmi (θ(y)) = µli(µ
m−l
i (θ(y))) = µli(e) (B.38)

µmi (θ(y)) = µmi (µl−mi (e)) = µli(e) (B.39)

from which we can conclude that in case (b), in any possibility,

µni (θ(x)) = µmi (θ(y)) = µli(e).

Now, assume case (c). Let δ(x, y) = l (the case δ(y, x) = l is sym-
metrical). By hypothesis, we have δ(x, y) ⊕ m = n that implies

B.3 Proofs of Section 5.7 291

l < K(φ) (by assumption on stretching see page 5.7.1) and there-
fore, since δ is consistent we obtain µli(θ(x)) = θ(y). But then

µni (θ(x)) = µl+mi (θ(x)) = µmi (µli(θ(x))) = µmi (θ(y)).

Hence also in case (c) µni (θ(x)) = µmi (θ(y)). Thus, by definition
of the semantics of Na``TL for both cases (b) and (c) we conclude
σi, Nσ

i , θ |= x.an = y.am and thus v ∈ Di.

– case x.an y.am.

Suppose v = (x.an y.am,Θ, δ) ∈ AV qi . By definition of atomic
valuation ∆(x.an, y.am) = > or ∆(x.an, y.am) = 0 and therefore be
definition of ∆ we have the following possibilities:

a) [[x.an]]1γ,v 6= [[y.am]]1γ,v and ∃j > 0 : µj([[x.an]]1γ,v) = [[y.am]]1γ,v

b) [[x.an]]1γ,v = [[y.am]]1γ,v 6= ⊥ and [[x.an]]2γ,v < [[y.am]]2γ,v

c) [[x.an]]1γ,v = [[y.am]]1γ,v 6= ⊥ and [[x.an]]2γ,v = [[y.am]]2γ,v = ∗ and
(δ(x, y)⊕m > n ∨ δ(y, x)⊕ n < m).

We define θ(x) and θ(y) according to (B.30) and (B.31) as we have
done for the case of equality. Therefore we have by construction
Θ = hi ◦ θ and δ = δi. In order to have v ∈ Di it remains to show
that σi, Ni, θ |= x.an y.am for both a), b) as well as c).

a) It is straightforward that at the concrete level, there exists j ′ > j

such that µn+j′

i (θ(x)) = µmi (θ(y)) and therefore by definition of
the semantics of Na``TL we can conclude σi, Ni, θ |= x.an
y.am.

b) As we have done for case x.an = y.am, let [[x.an]]
2
γqi

v = l and

e = first(h−1
i ([[x.an]]γqi

,v)) then by (B.36) and (B.37) we have

µni (θ(x)) = µli(e). By hypothesis there exists l′ > l such that

µmi (θ(y)) = µl
′

i (e). But this implies µmi (θ(y)) = µl
′−l
i (µn(θ(x)))

and by definition σi, Ni, θ |= x.an y.am.

c) if δ(x, y) ⊕ m > n then (x, y) ∈ dom(δ). We can have either
δ(x, y) = ∗, then on the concrete level since δ is consistent there
must exist l′ > n such that µl

′

i (θ(x)) = θ(y) that is enough to
conclude that x.an reaches y.am. Otherwise, δ(x, y) = c 6= ∗
and since by hypothesis c+m > n then, for the consistency of
δ, at the concrete level µc+m−n

i (µn(θ(x))) = θ(y). So we are
done.
Finally if δ(y, x)⊕ n 6 m it is straightforward to verify that on
the concrete level x.an y.am.

Inductive step

• case ψ = ¬ψ′. According to the definition of atom we have to prove:

v = (¬ψ′, hi ◦ θ, δ) ∈ Di ⇔ (ψ′, hi ◦ θ, δ) /∈ Di.

292 Appendix B – Proofs of Chapter 5

Straightforward from the definition of Di, and semantics of Na``TL, in
fact:

v = (¬ψ′, hi ◦ θ, δ) ∈ Di ⇔ σi, Nσ
i , θ |= ¬ψ

′

⇔ σi, Nσ
i , θ 2 ψ′

⇔ (ψ′, hi ◦ θ, δ) /∈ Di

• case ψ = ψ1 ∨ψ2. As the previous case, straightforward from the defini-
tion of Di, and semantics of Na``TL, in fact:

(ψ1 ∨ ψ2, hi ◦ θ, δ) ∈ Di ⇔ σi, Nσ
i , θ |= ψ1 ∨ ψ2

⇔ σi, Nσ
i , θ � ψ1 |= ψ1 or σi, Nσ

i , θ � ψ2 |= ψ2

⇔ (ψ1, hi ◦ θ � ψ1, δ � ψ1) ∈ Di

or (ψ2, hi ◦ θ � ψ2, δ � ψ2) ∈ Di.

• case ψ = ∃x.ψ′.

[⇒] Suppose (∃x.ψ′, hi ◦ θ, δ) ∈ Di then σi, Nσ
i , θ |= ∃x.ψ

′. It follows
that there exists an e ∈ Eσi such that σi, Nσ

i , θ{e/x} |= ψ′. By general
assumption (see Page 178), x ∈ fv (ψ′) and hence dom(θ{e/x}) ⊆ fv (ψ′).
Thus,

(ψ′, hi ◦ θ{e/x}, δ
′
i) ∈ Di

where δ′i(z, y) = min {dne | µni ◦ θ{x/e}
±

(z) = θ{x/e}±(y)}.

[⇐] If (ψ′, hi ◦ θ{e/x}, δ′i) ∈ Di where

δ′i(z, y) = min {dne | µni ◦ θ{x/e}
±

(z) = θ{x/e}±(y)}

then σi, Nσ
i , θ{e/x} |= ψ′. And therefore σi, Nσ

i , θ |= ∃x.ψ
′ and finally

(∃x.ψ′, hi ◦ θ, δ) ∈ Di where δ = δ′i � ψ.

• case ψ = ¬Xψ′. We have:

(¬Xψ′, hi ◦ θ, δi) ∈ Di ⇔ σi, Nσ
i , θ |= ¬Xψ

′

⇔ σi, Nσ
i , θ 2 Xψ′

⇔ σi+1, Nσ
i+1, λ

σ
i ◦ θ 2 ψ′

⇔ σi+1, Nσ
i+1, λ

σ
i ◦ θ |= ¬ψ

′

⇔ σi, Nσ
i , θ |= X¬ψ′

⇔ (X¬ψ′, hi ◦ θ, δi) ∈ Di

• case ψ = ψ1 Uψ2. To prove this case we use the following known equiv-
alence:

σ,N, θ |= ψ1 Uψ2 ⇔ σ,N, θ |= ψ2 ∨ (ψ1 ∧ X(ψ1 Uψ2))

B.3 Proofs of Section 5.7 293

for all allocation triple (σ,N, θ). Therefore we have:

(ψ1 Uψ2, hi ◦ θ, δ) ∈ Di ⇔ σi, Nσ
i , θ |= ψ1 Uψ2

⇔ σi, Nσ
i , θ |= ψ2 ∨ (ψ1 ∧ X(ψ1 Uψ2))

⇔ σi, Nσ
i , θ � ψ2 |= ψ2 or

(σi, Nσ
i , θ � ψ1 |= ψ1 and
σi, Nσ

i , θ |= X(ψ1 Uψ2))
⇔ (ψ2, hi ◦ θ � ψ2, δ � ψ2) ∈ Di or

(ψ1, hi ◦ θ � ψ1, δ � ψ1) ∈ Di and
(X(ψ1 Uψ2), hi ◦ θ, δ) ∈ Di

Proposition 5.7.25. φ is H-satisfiable if and only if there exists a path in
GH(φ) that fulfils φ.

Proof.

[⇐] If there exists π in GH(φ) that fulfils φ, by definition this implies that
φ is satisfied by an allocation triple (σ,N, θ) generated by the underlying
run of π.

[⇒] Now assume that φ is H-satisfiable, and let ρ = q0λ0q1λ1 · · · be a run
generating a triple (σ,N, θ) with generator (hi)i∈N such that σ,N, θ |= φ.
We construct a path π = (q0, D0) λ0 (q1, D1) λ1 · · · that fulfils φ as
follows:

Di = {(ψ, hi ◦ θ, δi) | ψ ∈ CL(φ), σi, Nσ
i , θ |= ψ}

where let θ± be the extension of θ to the set E±
qi

as defined by (B.16) (cf.
page 283) then δi is defined for all x, y ∈ fv (ψ) ∪ E±

qi
by:

δi(x, y) = min {dne | µni ◦ θ
±(x) = θ±(y)}.

First of all, by Lemma B.3.5 (qi, Di) is an atom for all i ∈ N. Secondly,
we show that π is indeed a path by proving that it satisfies the conditions
of Definition 5.7.23.

1. By the construction of π.

2. By contradiction. Assume that there exists an i > 0 such that
(qi, Di) −→λi

(qi+1, Di+1) is not a transition of G. Take the minimal
such i. Then one of the following must hold:

i) qi −→λi
qi+1 is not a transition in H. But this contradicts the

fact that ρ is a run of H.

294 Appendix B – Proofs of Chapter 5

ii) By contradiction assume that there exists (Xψ, hi ◦ θ, δi) ∈ Di

such that (ψ,Θ′, δ′) /∈ Di+1 for all (ψ,Θ′, δ′) ∈ [λi◦(ψ, hi◦θ, δi)].
But then also (ψ, hi+1 ◦λσi ◦ θ, δi+1) /∈ Di+1 since (ψ, hi+1 ◦λσi ◦
θ, δi+1) ∈ [λi◦(ψ, hi◦θ, δi)] (see Lemma B.3.3); hence this would
imply σi+1, Nσ

i+1, λ
σ
i ◦ θ 2 ψ. But then also σi, Nσ

i , θ 2 Xψ,
contradicting the construction of Di.
Assume (ψ,Θ′, δ′) ∈ [λi ◦ (ψ,Θ, δ)] ∩Di+1, but (Xψ,Θ, δ) /∈ Di.
By construction of Di+1, the tuple (ψ,Θ′, δ′) must be of the
form (ψ, hi+1 ◦ θ, δi+1) and σi+1, Nσ

i+1, θ |= ψ. Condition 1 of
Definition 5.7.20 implies that cod(hi+1 ◦ θ) ⊆ cod(λi). Then,
since λσi � λi, by Lemma 5.3.19 we have cod(θ) ∩ Nσ

i+1 = ∅.
Therefore there exists θ′ : fv (ψ) ⇀ Ent such that

λσi ◦ θ
′ = θ.

Now by the semantics of Na``TL, σi+1, Nσ
i+1, λ

σ
i ◦θ

′ |= ψ implies
σi, Nσ

i , θ
′ |= Xψ. Thus by definition ofDi we must have (Xψ, hi◦

θ′, δi) ∈ Di. Contradiction.

3. Assume (ψ1 Uψ2, hi ◦θ, δi) ∈ Di. By the construction of Di we have
σi, Nσ

i , θ |= ψ1 Uψ2. Therefore σj , Nσ
j , λ

σ
j−1◦· · ·◦λ

σ
i ◦θ�fv(ψ2) |= ψ2

for some j > i. Due to the construction of Dj , it follows that
(ψ2, hj ◦ λσj−1 ◦ · · · ◦ λ

σ
i ◦ θ � ψ2, δj � ψ2) ∈ Dj and Lemma B.3.3,

(ψ2, hj ◦ λσj−1 ◦ · · · ◦ λ
σ
i ◦ θ � ψ2, δj � ψ2) ∈ [λj−1 ◦ · · · ◦ λi ◦ (ψ2, hi ◦

θ � ψ2, δi � ψ2)]qi,qj .

Thus, π is a path and it is fulfilling since it satisfies φ by construction.

Proposition 5.7.27. If π is fulfilling path in GH(φ), then Inf (π) is a self-
fulfilling SCS of GH(φ).

Proof. Let G′ = Inf (π). G′ is strongly connected. From the definition of
infinite set it follows that there exists i > 0 such that the atoms in πi =
(qi, Di)λi(qi+1, Di+1)λi+1 · · · are precisely those in G′. Furthermore, if there
is an atom A ∈ G′ such that (ψ1 Uψ2,Θ, δ) ∈ DA, then there exists j > i :
(qj , Dj) = A. By condition 3 of Def. 5.7.23 we have that there exists n > j such
that (ψ2,Θ

′, δ′) ∈ Dn where (ψ2,Θ
′, δ′) ∈ [λn−1 ◦ · · · ◦ λj ◦ (ψ2,Θ �ψ2, δ � ψ2)].

But then (qn, Dn) ∈ G′, hence G′ is self-fulfilling.

C

Proofs of Chapter 6

The next proof uses the following facts implied by the definition of Ω:

∀a ∈ n(P) : ∀Q : ε(a)] Ω(a,Q, k, tt) = Ω(a,Q, k, tt) (C.1)

∀Q : ε(n(Q))] Ω(@, Q, k, tt) = Ω(@, Q, k, tt). (C.2)

Moreover the definition of union of states implies that:

∀a : ε(a)] ε(a) = ε(a)

Conjecture 6.3.29. Let P̃ be a well-indexed process. If noi(P̃) → Q then
there exists λ and a well-indexed process Q̃′ such that D(P̃) −→λ (D(Q̃′)]n(P̃))

and noi(Q̃′) ≡ Q.

Proof. (Sketch) We give a sketch proof of this conjecture by induction on the
depth of the derivation of P → Q. The last rule used in the transition P → Q
can be any of those listed in Table 6.2.2. We distinguish the possible cases1

• case (Red In). We have that P̃ is of the form P̃ = ni[inm.P̃
′|Q̃′′]|mj [R̃

′]
and P = n[inm.P ′|Q′′]|m[R′]. Therefore by the (Red In) we have Q =
m[n[P ′|Q′′]|R′]. Let Q̃′ = mj [ni[P̃

′|Q̃′′]|R̃′], we have obviously noi(Q̃′) ≡
Q.

1In this proof, we write indexed processes with a tilde. The same process without tilde
is the result of the application of the function noi . That is, for any indexed process R̃,
noi(R̃) = R.

295

296 Appendix C – Proofs of Chapter 6

By definition of Ω(@, P̃ , 1, tt) we have:

Ω(@, P̃ , 1, tt) = Ω(@, ni[inm.P̃
′|Q̃′′], 1, tt) ∪ Ω(@,mj [R̃

′], 1, tt)

= ε(@)] ε(ni)] Ω(ni, inm.P̃
′|Q̃′′, 1,ff)]

Ω(mi, R̃
′, 1, tt)]

〈{ecni
, ho(@)}, {(ec

ni
, ho(@))},1{ec

ni
,ho(@)},

{(ecni
, ρ(inm.P̃ ′|Q̃′′)), (ho(@),0)}〉]

〈{ecmj
, ho(@)}, {(ec

mj
, ho(@))},1{(ec

mj
,ho(@))},

{(ecmj
, ρ(R̃′)), (ho(@),0)}〉

Symmetrically,

Ω(@, Q̃′, 1) = ε(@)] ε(mj)] ε(ni)]

Ω(ni, P̃
′|Q̃′′, 1, tt)] Ω(mj , R̃

′, 1, tt)]

〈{ho(@), ec
mj
}, {(ecmj

, ho(@))},1{(ec
mj
,ho(@))}

{(ecmj
, ρ(R̃′)), (ho(@),0)}〉]

〈{ho(mj), e
c
ni
}, {(ecni

, ho(mj))},1{(ec
ni
,ho(mj))},

{(ho(mj),0), (ecni
, ρ(P̃ ′|Q̃′′))}〉

Let D(P̃) = (hcf ◦h
−1
1 (γΩ(@,P̃ ,1,tt)),PΩ(@,P̃ ,1,tt){0/is(@)}) where the mor-

phism h1 is given by the definition of D. The configuration γD(P̃) — even
after the transformation of representation produced by the application
of hcf ◦ h

−1
1 — can be considered as the union of several configurations.

For the concrete part of γΩ(@,P̃ ,1,tt), for example the following must be
sub-configurations of γD(P̃):

γ′ = ({ecni
, ho(@)}, {(ec

ni
, ho(@))},1{ec

ni
,ho(@)})

γ′′ = ({ecmj
, ho(@)}, {(ec

mj
, ho(@))}1{(ec

mj
,ho(@))}).

In fact, we can safely assume that even after the application of hcf ◦ h
−1
1 ,

there is a concrete entity of type mj and a concrete one of type ni that
have a reference to ho(@) (by L-canonicity). Since the actual entity does
not matter, we can assume for simplicity that these are precisely ecni

, ecmj
.

Hence, up to isomorphism, γD(P̃) is of the form

γD(P̃) = γ′] γ′′] γ′′′

for some γ′′′.

Rule In of Table 6.3.10 starts by the application of

IOUp(D(P̃), inm.P̃ ′|Q̃′′, ecni
7→ ho(mj))

Appendix C – Proofs of Chapter 6 297

that in turn applies first move(γD(P̃), e
c
ni
7→ ho(mj)). The latter substi-

tute γ′ by the appropriate pointer update dictated by its definition. To
the resulting configuration, activation applies:

act P̃ ′|Q̃′′,ni
(γε(@)] ({ecni

, ho(mj)}, {(e
c
ni
, ho(mj))}1{ec

ni
,ho(mj)})]

({ecmj
, ho(@)}, {(ec

mj
, ho(@))},1{(ec

mj
,ho(@))})]

γΩ(ni,inm.P̃ ′|Q̃′′,1,ff)] γΩ(mi,R̃′,1,tt))

= γε(@)] ({ecni
, ho(mj)}, {(e

c
ni
, ho(mj))},1{ec

ni
,ho(mj)})]

({ecmj
, ho(@)}, {(ec

mj
, ho(@))},1{(ec

mj
,ho(@))})]

γΩ(ni,P̃ ′|Q̃′′,1,tt)] γΩ(mi,R̃′,1,tt))

Therefore, we have (also using (C.1)) that the configuration of

IOUp(D(P̃), inm.P̃ ′|Q̃, ecni
7→ ho(mj))

is γΩ(@,Q̃′,1). For the P component we have:

PD(P̃){PD(P̃)(e)\{inm.P̃
′|Q̃′′} ∪ ρ(P̃ ′|Q̃′′)/ecni

} = PD(P̃){ρ(P̃
′|Q̃′′)/ecni

}

which this is precisely: PΩ(@,Q̃′,1,tt). Thus we have:

IOUp(D(P̃), inm.P̃ ′|Q̃, ecni
7→ ho(mj)) = 〈γΩ(@,Q̃,1,tt),PΩ(@,Q̃,1,tt)〉

= Ω(@, Q̃′, 1, tt)

Note that since n(Q̃′) = n(P̃), and by (C.2) we have

Ω(@, Q̃′, 1, tt)] ε(n(P̃)) = Ω(@, Q̃′, 1, tt)

Now, according to the In rule of Table 6.3.10, the target state is the
canonical form of a state in the safe expansion, together with the updated
set of capabilities we have just computed. Thus:

D(P̃) −→λ (hcf ◦ h
−1(γ′),PΩ(@,Q̃′,1,tt)).

for all (γ′, h) ∈ SExp(γΩ(@,Q̃′,1,tt)). Among the canonical configurations

(for the properties of the canonical form) there must be one that corre-
spond to cf(γ′′) where γ′′ is a safe configuration expanded by a morphism
as described by the definition of D(Q̃′). This is precisely the one that
expands the unbounded entities by a chain of L concrete entities followed
by an unbounded entity.

• case (Red Out). Similar to the (In Rule) case.

• case (Red Open). We have P̃ =openn.P̃ ′|ni[R̃] and noi(P̃)=openn.P ′|n[R]
and Q = P ′|R. Let Q̃′ = P̃ ′|R̃ then noi(Q̃′) ≡ Q.

298 Appendix C – Proofs of Chapter 6

By definition of Ω(@, P̃ , 1, tt) we have:

Ω(@, P̃ , 1, tt) = Ω(@, open n.P̃ ′, 1, tt)] Ω(@, n[R̃], 1, tt)

= ε(@)] Ω(@, P̃ ′, 1,ff)] Ω(ni, R̃, 1, tt)] ε(ni)]

〈{ecni
, ho(@)}, {(ec

ni
, ho(@))},1{(ec

ni
,ho(@))},

{(ecni
, ρ(R̃)), (ho(@),0)}〉

For the process Q̃′ we have:

Ω(@, P̃ ′|R̃, 1, tt) = Ω(@, P̃ ′, 1, tt)] Ω(@, R̃, 1, tt)

Let D(P̃) = (hcf ◦h
−1
1 (γΩ(@,P̃ ,1,tt)),PΩ(@,P̃ ,1,tt)) where h1 is the morphism

determined by the definition of D. As observed for the case (Red In), be-
cause of the canonical form, we can separate the part of the configuration
γD(P̃) related to the execution of the rule from the rest of the config-
uration. Therefore, the first step of the application of OpenUp result
in:

OpenUp(D(P̃), is(@), ec
ni
, P̃ ′)

= 〈act@,P̃ ′(dissolve(γD(P̃), ho(@), ec
ni

)),

PD(P̃){PD(P̃)(is(@))\{open n.P̃ ′} ∪ ρ(P̃ ′) ∪ PD(P̃)(e
c
ni

)/is(@)}〉

= 〈act@,P̃ ′(dissolve(γD(P̃), ho(@), ec
ni

)),PD(P̃){ρ(P̃
′|R̃)/is(@)}〉

Let’s now concentrate only on the configuration part:

act@,P̃ ′(dissolve(γD(P̃), ho(@), ec
ni

))

where

γD(P̃) = γε(@)] γΩ(@,P̃ ′,1,ff)] γΩ(ni,R̃,1,tt)
] γε(ni)

]〈{ecni
, ho(@)}, {(ec

ni
, ho(@))},1{ec

ni
,ho(@)}〉.

Moreover, according to the definition of dissolve (see page 221), after the
deletion of ec

ni
that cancel the subset

〈{ecni
, ho(@)}, {(ec

ni
, ho(@))},1{ec

ni
,ho(@)}〉

the pointer structure must be modified according to the following schema:

µ′ = µγq{ho(@)/µγq (e
c
ni

), ho(@)/µ−1
γq

(ho(ni))}.

The first kind of update that links other possible copies of ni to ho(@) is
implicit in the representation of the configuration we are using. Namely:
if there would be other entities linked to ec

ni
, since we consider the config-

uration as the union of the part related to ec
ni

and the rest of the configu-
ration, for the very nature of the union operator, the other copies of ni are

Appendix C – Proofs of Chapter 6 299

already linked to ho(@) (and represented in other part of the union). For
the second update, note that the entities in µ−1

γq
(ho(ni)) that are those

inside ni, in γD(P̃) are contained in the part of the configuration build

by Ω(ni, R̃, 1, tt). In fact this is the only part of the configuration that
embeds ambients inside ni. Note furthermore, that these ambients must
be precisely the set enab(R̃). Therefore, moving these ambients from ni
into @, corresponds to replace the part of the configuration Ω(ni, R̃, 1, tt)
by Ω(@, R̃, 1, tt). We conclude that after the pointer update dictated by
dissolve to the configuration γD(P̃) we have:

act@,P̃ ′(γε(@)] γΩ(@,P̃ ′,1,ff)] γΩ(@,R̃,1)] γε(ni))

and by the application of act that replace Ω(@, P̃ ′, 1,ff) by Ω(@, P̃ ′, 1, tt)
we obtain:

act@,P̃ ′(γε(@)] γΩ(@,P̃ ′,1,ff)] γΩ(@,R̃,1,tt)] ε(ni))

= γε(@)] γΩ(@,P̃ ′,1,tt)] γΩ(@,R̃,1,tt)] γε(ni)

= γε(@)] γΩ(@,P̃ ′|R̃,1,tt)] γε(ni)

= γε(@)] γΩ(@,Q̃′,1,tt)] γε(ni)

= γΩ(@,Q̃′,1,tt)] γε(ni).

Now, according to the Open rule of Table 6.3.10, the target states are
the canonical form of the state in the safe expansion, among which there
is h one such that (hcf ◦h−1(γΩ(@,Q̃′,1)]ε(ni)),PΩ(@,Q̃′,1)) = D(Q̃′)]ε(ni)

using the same observation we applied for In. Moreover, since n(P̃) =
{ni}, also in this case we conclude:

D(P̃) −→λ D(Q̃′)] ε(n(P̃)).

The other cases (Red Res), (Red Amb), (Red Par), (Red ≡) follow by induction
and are not reported here.

Notations

General and Miscellaneous

⇀ partial function
∼= isomorphism
dom(f) domain of the function f
cod(f) codomain of the function f
◦ function composition
f �E restriction of the domain of f to E
Bk k-th Bell number
fv(φ) free variables of φ
fbv (φ) free and bounded variable of φ
[[·]] semantics function
ι projection function
] disjoint union
M multi-set

Ent countable set of entities
LVar set of logical variables
PVar set of program variables
σ (folded) allocation sequence
Eσi set of entities at state i-th of σ
Nσ
i set of new entities at i state of σ

θσi valuation at state i of σ
N set of entities initially new
θ partial valuation of free logical variables
|=u satisfaction relation on unfolded allocation sequences
|=f satisfaction relation on folded allocation sequences
A ABA
H HABA
Ap concrete semantics of program p
Hp symbolic semantics of program p

301

302 Notations

F set of sets of accept states
ρ run
runs(H) set of H runs
Gen(ρ) set of allocation sequences generated by ρ
L(H) language accepted by H
CL(φ) closure of φ
AH set of atoms for φ
GH(φ) tableau graph for φ and H
AV q atomic proposition valuation of q
π allocation path
Inf (π) infinite set of π
SCS strong connected subgraph
Par set of compound statements
V semantics of boolean expressions
⊥ undefined value

Chapter 3

OId universe of object identities
Evt universe of events
MName universe of class names
CName universe of class names
VName universe of variable names
MDecl universe of method declarations
CDecl universe of class declarations
VDecl universe of variable declarations
Type universe of types
Val universe of values
SBOTL BOTL static expressions
TBOTL BOTL temporal expressions
Conf set of configurations of a BOTL model
ς local state of a BOTL model
γ valuation of formal parameter/return value

in method invocations
η path of configurations
{| · |} bag
] union of bags
δ translation function for OCL expressions
∆ translation function for OCL constraints

Notations 303

Chapter 4

λ reallocation
vfold fold relation between allocation triples

or ABA/HABA languages
∞ black hole
dqe bounded HABA state q
bqc unbounded HABA state q
Exp(H) an expansion of H
Hd duplication of H
Θ flattening of Θ
K(φ) upper bound on the number of variables

for constructing GH(φ)
Ω(f) black number of f

Chapter 5

Nav set of navigation expressions
α navigation expression
.an abbreviation for .a.aa︸ ︷︷ ︸

n times
µ reference function
M upper bound to the precision of cardinality functions
M {1, . . . ,M}
∗ unbounded cardinality value
CE cardinality function on E
1E unitary cardinality function on E
⊕ bounded sum operation on cardinalities
◦
∑
e∈E bounded sum over E
dneM cut-off of n at M
E∗ set of unbounded entities in E
γ configuration
Conf set of all configurations
≺ relation induced by µ
� reflexive closure of ≺
indegree(e) number of references pointing to e
first(E) first entity of the chain E
last(E) last entity of the chain E
�−→ morphism

=� reallocation
id identity morphism or reallocation

304 Notations

◦ composition of morphism
� concretion
v HABA simulation
nil syntactic constant for null value
ϑ standard interpretation for program variables
PV set of entities modelling program variables
µ∗(e) remainder of the chain starting at e
〈γ〉PV PV -reachable part of γ
h↓ contractive morphism h
h↓C contractive morphism h with shrink factor bounded by C
error error state
SExp(γ) safe expansion of γ
cf(γ) canonical form of γ
Lp bound on the longest navigation expression in p
K(φ) bound on stretching

H ⇑M̂ stretching of H up to M̂
E−, E+ special set of logical variables for E
δ distance function between interpretation of variables
∆ distance function between navigation expressions
[− ◦ −] valuation reallocator

Chapter 6

N universe of ambient names

Ñ universe of indexed names
Proc universe of processes
J set of indexes
n(P) names of P
fn(P) free names of P
bnP bound names of P
noi(P) non-indexed version of P
idx (P) set of indexes in P
→ reduction relation
→∗ reflexive and transitive closure of →
≡ structural congruence relation
ho(a) host entity of a
is(a) inactive site entity of a
A(e) ambient represented by e
e:n shorthand for A(e) = n
Eho subset of (fixed) host entities in E
Ec subset of ambient copies in E
Em subset of mobile entities in E

Notations 305

E is
n(P) set of inactive sites in P

Eho
n(P) set of hosts in P

P(e) set of processes to be executed by e
@ outer-most ambient
`a(e) longest pure chain of a copies leading to e
] configuration union
ρ(P) set of subprocesses to be executed

by the ambient containing P
enab(P) enabled ambients in P
ε(a) empty (fixed) state for ambient a
Ω encoding function for processes
D encoding function for processes
qpre pre-initial state
qin initial state
λpre pre-initial reallocation
act activation function
move move function
dissolve dissolve function
IOUp Input/output update of the state
OpenUp Open update of the state
siblings(e) set of sibling ambients of e
parents(b) set of parents of b
son(a) set of son entities of a

Index

Symbols
L-compactness, 175
L-compactness for MA, 226
L-safety, 170
L-safety for MA, 226
Inf , 38
PV -reachable, 169
A-satisfiability, 103, 163
A-validity, 103, 163
H-satisfiable, 103, 163
H-valid, 103, 163
∞-reallocation, 94
F eventually operator, 29
G globally operator, 29
U until operator, 29
X next operator, 28
(Common Birth), 154
(Common Death), 154
(No-Cross), 155

A
accepted language

Büchi automata, 26
HABA, 98, 160

active ambient, 225, 229
allocation path

A``TL, 129
Na``TL, 206

allocation sequence
A``TL, 86
Na``TL, 144

Allocational Büchi Automaton, 93
with references, 150

Allocational Temporal Logic, 85
atom, 36

A``TL, 121
Na``TL, 200

atomic proposition valuations
A``TL, 119
Na``TL, 199

B
Büchi automata, 26

generalised, 27
Bandera Specification Language, 79
black hole, 94

abstraction, 95
black number, 120
BOTL operational model, 59

configuration, 59
bounded entities, 146

C
canonical form, 176
canonical form for MA, 226
cardinality function, 145
class, 42
closure, 36

A``TL, 120
Na``TL, 200

common fate, 156
Computation Tree Logic (CTL), 30
concrete automaton Ap

A``TL, 108
with references, 171

configuration
Na``TL, 146

308 Index

BOTL operational model, 59
union, 227

connected graph, 201

D
distance, 193
duplication, 116
dynamic aliasing, 48

E
enabled ambient, 229
entity

concrete, 146
mobile, 239
multiple, 146
unbounded, 146

event, 53

F
flattening, 69
folded allocation sequence

A``TL, 88
Na``TL, 159

fulfilling path
A``TL, 129
Na``TL, 206

G
garbage collection, 48
generalised Büchi automaton, 27
generator

A``TL, 96
Na``TL, 160

H
HABA emptiness problem, 209
HABA expansion, 101
HD-automaton, 40
High-level ABA, 94

with references, 158
host, 219

I
identity morphism, 149
identity of object, 42
identity reallocation, 164

impartiality, 154
inactive

ambient, 225
site, 222

indexed process, 221
initial valuation, 158
initial-state, 224
invariants, 65
isomorphism

A``TL, 89
Na``TL, 150

K
Kripke structure, 24

fair, 27

L
leads-to operator, 143
LFSA, 26
Linear Temporal Logic (LTL), 28

M
MA process encoding, 232
maximal connected subgraph, 201
metempsychosis metaphor, 91
method occurrence, 53
metric space, 195
Mobile Ambients, 214
mobile entities, 239
model checker, 23
model checking, 23
model checking problem, 32
modelling, 24
morphism, 148

composition, 149
contractive, 170
identity, 149

multiplicity, 152
multiset, 152

N
navigation expressions, 143
non-resurrection condition, 87

O
object, 42

Index 309

Object Constraint Language, 65
Object Constraint Language (OCL)

constraints, 66
expressions, 66

iterate, 70

P
parents, 240
path, 25
postconditions, 65
Pre-initial state, 223
preconditions, 65
properties specification, 24
pure chain, 148

R
reallocation

A``TL, 88
Na``TL, 153

references, 47

S
safe expansions, 177
satisfiability problem, 31
self-fulfilling SCS, 38

A``TL, 131
Na``TL, 206

shrink factor, 170
siblings, 240
simulation, 161
son, 240
stretching, 191
strongly connected subgraph (SCS),

38
structural rules, 216
symbolic automaton Hp

A``TL, 111
Na``TL, 182

synchronous product of LFSA, 27

T
tableau graph, 36

A``TL, 127
Na``TL, 205

U
UML, 43
unitary cardinality function, 146

V
validity problem, 32
valuation

A``TL, 118
Na``TL, 193

valuation reallocator, 203
verification, 24

W
weakly connected graph, 201
well-formed configuration, 169
well-indexed, 221

Samenvatting

Dit proefschrift beschrijft een onderzoek op het gebied van software ve-
rificatie, met name naar automatische technieken voor het vaststellen van de
correctheid van objectgebaseerde programma’s. We kijken daarbij vooral naar
de dynamische aspecten van dergelijke programma’s en beschouwen verificati-
etechnieken gebaseerd op model checking. Het grootste probleem bij het ont-
werpen van algoritmen voor model checking is de explosie van de oneindige toe-
standsruimte als gevolg van de dynamische constructies van objectgebaseerde
programmeertalen. Enerzijds zorgen de onbegrensde allocatie en deallocatie
(geboorte en sterfte) van zowel objecten als threads voor deze oneindige toe-
standsruimte. Anderzijds verwijzen objecten naar elkaar middels referenties
(pointers) waardoor een ‘heap’ ontstaat – waar de objecten gealloceerd wor-
den – waarvan de dynamische topologische structuur op een onvoorspelbare en
complexe manier evolueert.

Ten einde de gesignaleerde problemen op te lossen, definieert dit proefschrift
allereerst een temporele logica, gericht op de specificatie van een grote verschei-
denheid van eigenschappen van objectgebaseerde systemen. Vervolgens worden
twee belangrijke deelverzamelingen van deze logica onder de loep genomen. De
eerste deelverzameling is een basislogica om te kunnen redeneren over allocatie
en deallocatie van objecten. De tweede deelverzameling voegt daar de moge-
lijkheid aan toe om over dynamische referenties te redeneren. Deze temporele
logica’s worden gëınterpreteerd op geschikte, op (Büchi) automaten gebaseerde,
modellen die gebruikt worden als eindige abstracties van systemen met een
oneindige toestandsruimte. Dergelijke automaten worden ook gebruikt voor
de definitie van de operationele semantiek van programmeertalen en vormen
de basis van onze algoritmen voor model checking. Voor de basislogica voor
allocatie en deallocatie van objecten presenteren we een correct en volledig al-
goritme. Voor de logica met dynamische referenties laten we een correct (maar
niet volledig) algoritme zien. Dit laatste algoritme kan derhalve incorrecte
tegenvoorbeelden opleveren.

Daarnaast laten we in dit proefschrift enkele voorbeelden zien hoe eindige
automaten automatisch kunnen worden afgeleid uit een programma. Tenslotte
demonstreren we het gebruik van de ontwikkelde theorie en algoritmen aan de

311

312 Samenvatting

hand van een voorbeeld waarin veiligheidseigenschappen van ‘Mobile Ambients’
worden geverifieerd.

The author

Dino Distefano was born on July 20th, 1973, in Catania, Italy. He started
studying computer science at the University of Pisa in 1992. He graduated in
1997 after an internship at the Free University of Amsterdam where he carried
out the research for his master thesis on formal semantics of concurrent object-
oriented languages. In 1999, he joined the Formal Methods and Tools group at
the Department of Computer Science of the University of Twente working on
the research described in this thesis.

313

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Pro-

cess Algebra. Faculty of Mathematics and
Computing Science, TUE. 1996-01

A.M. Geerling. Transformational Devel-

opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Science,
KUN. 1996-02

P.M. Achten. Interactive Functional Pro-

grams: Models, Methods, and Implementa-

tion. Faculty of Mathematics and Computer
Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local

Search. Faculty of Mathematics and Com-
puting Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation

of Functional Languages on Parallel Ma-

chines with Distrib. Memory. Faculty of
Mathematics and Computer Science, KUN.
1996-05

D. Alstein. Distributed Algorithms for

Hard Real-Time Systems. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
06

J.H. Hoepman. Communication, Syn-

chronization, and Fault-Tolerance. Fac-
ulty of Mathematics and Computer Science,
UvA. 1996-07

H. Doornbos. Reductivity Arguments and

Program Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
08

D. Turi. Functorial Operational Seman-

tics and its Denotational Dual. Faculty of
Mathematics and Computer Science, VUA.
1996-09

A.M.G. Peeters. Single-Rail Handshake

Circuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineer-

ing Specification Formalism. Faculty of Me-
chanical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation

in Lambda Calculus and its Relation to

Type Inference. Faculty of Mathematics and
Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and

Partition Refinement for Model Checking.

Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-13

M.M. Bonsangue. Topological Dualities

in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs

of Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Trans-

formations in Context. Faculty of Com-
puter Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of

Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type The-

ory in Logic and Mathematics. Faculty of
Mathematics and Computing Science, TUE.
1997-04

C.J. Bloo. Preservation of Termination

for Explicit Substitution. Faculty of Mathe-
matics and Computing Science, TUE. 1997-
05

J.J. Vereijken. Discrete-Time Process Al-

gebra. Faculty of Mathematics and Com-
puting Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional

Approach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-
07

A.W. Heerink. Ins and Outs in Refusal

Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A

Discrete-Event Simulator for Systems Engi-

neering. Faculty of Mechanical Engineering,
TUE. 1998-02

J. Verriet. Scheduling with Communica-

tion for Multiprocessor Computation. Fac-
ulty of Mathematics and Computer Science,
UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous

Low-Power 80C51 Microcontroller. Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1998-04

A.A. Basten. In Terms of Nets: System

Design with Petri Nets and Process Algebra.

Faculty of Mathematics and Computing Sci-
ence, TUE. 1998-05

E. Voermans. Inductive Datatypes with

Laws and Subtyping – A Relational Model.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-01

H. ter Doest. Towards Probabilistic

Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simula-

tion of Surface Processes. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
03

C.H.M. van Kemenade. Recombinative

Evolutionary Search. Faculty of Mathemat-
ics and Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a

Study on Indecisiveness in Sample Selec-

tion. Faculty of Mathematics and Natural
Sciences, RUG. 1999-05

M.P. Bodlaender. Schedulere Optimiza-

tion in Real-Time Distributed Databases.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-06

M.A. Reniers. Message Sequence Chart:

Syntax and Semantics. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
07

J.P. Warners. Nonlinear approaches to

satisfiability problems. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
08

J.M.T. Romijn. Analysing Industrial

Protocols with Formal Methods. Faculty of
Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata

for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator for

Hybrid Systems. Faculty of Mechanical En-
gineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Con-

cepts and Proof Rules. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
12

R.S. Venema. Aspects of an Integrated

Neural Prediction System. Faculty of Math-
ematics and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Imple-

mentation of Attribute Grammars. Faculty
of Mathematics and Computer Science, UU.
1999-14

R. Schiefer. Viper, A Visualisation Tool

for Parallel Progam Construction. Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and State-

craft in the Dutch Republic. Faculty of
Mathematics and Computer Science, UvA.
2000-01

T.E.J. Vos. UNITY in Diversity. A

stratified approach to the verification of dis-

tributed algorithms. Faculty of Mathematics
and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the

Design of Delay-Insensitive Communicating

Processes. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer

Aided Verification of Protocols. Faculty of
Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the

MathSpad Editor. Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending

and Packaging Plant. Faculty of Mechani-
cal Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for De-

riving Correct Programs. Faculty of Mathe-
matics and Computing Science, TUE. 2000-
07

P.A. Olivier. A Framework for Debugging

Heterogeneous Applications. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2000-08

E. Saaman. Another Formal Specification

Language. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary

Search Discovering and Representing Search

Space Structure. Faculty of Mathematics
and Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events

a computational approach to knowledge,

observation and communication. Faculty
of Mathematics and Computing Science,
TU/e. 2001-02

M. Huisman. Reasoning about Java pro-

grams in higher order logic using PVS and

Isabelle. Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design

Processes through Structured Reflection.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting:

syntax and semantics. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2001-05

R. van Liere. Studies in Interactive Vi-

sualization. Faculty of Natural Sciences,
Mathematics and Computer Science, UvA.
2001-06

A.G. Engels. Languages for Analysis

and Testing of Event Sequences. Faculty
of Mathematics and Computing Science,
TU/e. 2001-07

J. Hage. Structural Aspects of Switching

Classes. Faculty of Mathematics and Natu-
ral Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Anal-

ysis of Data in Environmental Epidemiol-

ogy: A Case-study into Acute Effects of Air

Pollution Episodes. Faculty of Mathematics
and Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model

Checking. Faculty of Computer Science,
UT. 2001-10

D. Chkliaev. Mechanical verification of

concurrency control and recovery protocols.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-11

M.D. Oostdijk. Generation and presen-

tation of formal mathematical documents.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control:

A simulation approach using χ. Faculty of
Mechanical Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space re-

duction techniques for model checking. Fac-
ulty of Mathematics and Computing Sci-
ence, TU/e. 2001-14

M.C. van Wezel. Neural Networks for In-

telligent Data Analysis: theoretical and ex-

perimental aspects. Faculty of Mathematics
and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Speci-

fication and Analysis of Industrial Systems.
Faculty of Mathematics and Computer Sci-
ence and Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuipers. Techniques for Understanding

Legacy Software Systems. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Pro-

cess Algebra. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2002-04

R.J. Willemen. School Timetable Con-

struction: Algorithms and Complexity. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verifi-

cation of Probabilistic, Real-time and Para-

metric Systems. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2002-
06

N. van Vugt. Models of Molecular Com-

puting. Faculty of Mathematics and Natural
Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-

ing and Cost-Optimality in Model Check-

ing of Timed and Hybrid Systems. Faculty
of Science, Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin

Packing. Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Fil-

tering: Concepts and Algorithms. Faculty
of Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Models and Logics

for Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions

of Semantical Models. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary

Computation to Constraint Satisfaction and

Data Mining. Faculty of Mathematics and
Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage

for Video on Demand. Faculty of Mathe-
matics and Computer Science, TU/e. 2003-
01

M. de Jonge. To Reuse or To Be Reused:

Techniques for component composition and

construction. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2003-02

J.M.W. Visser. Generic Traversal over

Typed Source Code Representations. Fac-
ulty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Veri-

fication in Process Algebras with Data and

Timing. Faculty of Mathematics and Com-
puter Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of

Catalytic Reactions. Faculty of Mathemat-
ics and Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of

Tertiary Storage. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-07

H.P. Benz. Casual Multimedia Process

Annotation – CoMPAs. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2003-08

D. Distefano. On model checking the dy-

namics of object-based software: a founda-

tional approach. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-09

